# 1984 AHSME Problems/Problem 4

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A rectangle intersects a circle as shown: $AB=4$, $BC=5$, and $DE=3$. Then $EF$ equals: $[asy]defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, E=(3,0), F=(10,0), G=(12,0), H=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F); draw(D--G--H--A--cycle); draw(Circle(O, abs(O-C))); label("A", A, NW); label("B", B, NW); label("C", C, NE); label("D", D, SW); label("E", E, SE); label("F", F, SW); label("4", (2,0.85), N); label("3", D--E, S); label("5", (6.5,0.85), N); [/asy]$ $\mathbf{(A)}\; 6\qquad \mathbf{(B)}\; 7\qquad \mathbf{(C)}\; \frac{20}3\qquad \mathbf{(D)}\; 8\qquad \mathbf{(E)}\; 9$

## Solution $[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, E=(3,0), F=(10,0), X=(12,0), Y=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F), G=foot(E,A,C), H=foot(B,D,F), I=foot(C,D,F); draw(D--X--Y--A--cycle); draw(Circle(O, abs(O-C))); label("A", A, NW); label("B", B, N); label("C", C, NE); label("D", D, SW); label("E", E, S); label("F", F, S); label("G", G, N); label("H", H, S); label("I", I, S); label("4", (2,0.85), N); label("3", D--E, S); label("5", (6.5,0.85), N); draw(E--G^^H--B^^I--C, linetype("4 4")); [/asy]$

Draw $BE$ and $CF$, forming a trapezoid. Since it's cyclic, this trapezoid must be isosceles. Also, drop altitudes from $E$ to $AC$, $B$ to $DF$, and $C$ to $DF$, and let the feet of these altitudes be $G$, $H$, and $I$ respectively. $AGED$ is a rectangle since it has $4$ right angles. Therefore, $AG=DE=3$, and $GB=4-3=1$. By the same logic, $GBHE$ is also a rectangle, and $EH=GB=1$. $BH=CI$ since they're both altitudes to a trapezoid, and $BE=CF$ since the trapezoid is isosceles. Therefore, $\triangle BHE \cong \triangle CIF$ by HL congruence, so $IF=EH=1$. Also, $BCIH$ is a rectangle from $4$ right angles, and $HI=BC=5$. Therefore, $EF=EH+HI+IF=1+5+1=\boxed{7}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 