Difference between revisions of "1984 AIME Problems/Problem 13"

(Solution 2)
(Solution 2)
Line 25: Line 25:
 
=== Solution 2 ===
 
=== Solution 2 ===
 
   
 
   
Apply the formula <math>\cot^{-1}x + \cot^{-1} y = \cot^{-1}\left(\frac {xy-1}{x+y}\right)</math> repeatedly. Using it twice on the inside, the desired sum becomes <math>\cot (\cot^{-1}2+\cot^{-1}8)</math>
+
Apply the formula <math>\cot^{-1}x + \cot^{-1} y = \cot^{-1}\left(\frac {xy-1}{x+y}\right)</math> repeatedly. Using it twice on the inside, the desired sum becomes <math>\cot (\cot^{-1}2+\cot^{-1}8)</math>. This sum can then be tackled by taking the cotangent of both sides of the inverse cotangent addition formula shown at the beginning.
  
 
== See also ==
 
== See also ==

Revision as of 00:08, 18 August 2012

Problem

Find the value of $10\cot(\cot^{-1}3+\cot^{-1}7+\cot^{-1}13+\cot^{-1}21).$

Solution

Solution 1

We know that $\tan(\arctan(x)) = x$ so we can repeatedly apply the addition formula, $\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}$. Let $a = \cot^{-1}(3)$, $b=\cot^{-1}(7)$, $c=\cot^{-1}(13)$, and $d=\cot^{-1}(21)$. We have

$\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}$,

So

$\tan(a+b) = \frac{\frac{1}{3}+\frac{1}{7}}{1-\frac{1}{21}} = \frac{1}{2}$

and

$\tan(c+d) = \frac{\frac{1}{13}+\frac{1}{21}}{1-\frac{1}{273}} = \frac{1}{8}$,

so

$\tan((a+b)+(c+d)) = \frac{\frac{1}{2}+\frac{1}{8}}{1-\frac{1}{16}} = \frac{2}{3}$.

Thus our answer is $10\cdot\frac{3}{2}=15$.

Solution 2

Apply the formula $\cot^{-1}x + \cot^{-1} y = \cot^{-1}\left(\frac {xy-1}{x+y}\right)$ repeatedly. Using it twice on the inside, the desired sum becomes $\cot (\cot^{-1}2+\cot^{-1}8)$. This sum can then be tackled by taking the cotangent of both sides of the inverse cotangent addition formula shown at the beginning.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions