Difference between revisions of "1984 AIME Problems/Problem 15"

m (center tags don't work well w/ IE)
(fmtting)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Determine <math>\displaystyle w^2+x^2+y^2+z^2</math> if
+
Determine <math>w^2+x^2+y^2+z^2</math> if
  
 
<div style="text-align:center;"><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math><br /><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math><br /><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math><br /><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></div>
 
<div style="text-align:center;"><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math><br /><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math><br /><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math><br /><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></div>
  
 
== Solution ==
 
== Solution ==
For each of the values <math>t=4,16,36,64</math>, we have the equation
+
For each of the values <math>t=4,16,36,64</math>, we have the [[equation]]
 
 
<math>x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25)</math>
 
  
 +
<div style="text-align:center;"><math>x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)</math> <math>+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25)</math>
 
<math>=(t-1)(t-9)(t-25)(t-49)-(t-4)(t-16)(t-36)(t-64)</math>
 
<math>=(t-1)(t-9)(t-25)(t-49)-(t-4)(t-16)(t-36)(t-64)</math>
 +
</div>
  
However, each side of the equation is a polynomial in <math>t</math> of degree at most 3, and they have 4 common roots. Therefore, the polynomials must be equal.
+
However, each side of the equation is a [[polynomial]] in <math>t</math> of degree at most 3, and they have 4 common roots. Therefore, the polynomials must be equal.
 
 
  
 
Now we can plug in <math>t=1</math> into the polynomial equation. Most terms drop, and we end up with
 
Now we can plug in <math>t=1</math> into the polynomial equation. Most terms drop, and we end up with
  
<math>x^2(-8)(-24)(-48)=-(-3)(-15)(-35)(-63)</math>
+
<cmath>x^2(-8)(-24)(-48)=-(-3)(-15)(-35)(-63)</cmath>
  
 
so that
 
so that
  
<math>x^2=\frac{3\cdot 15\cdot 35\cdot 63}{8\cdot 24\cdot 48}=\frac{3^2\cdot 5^2\cdot 7^2}{2^{10}}</math>
+
<cmath>x^2=\frac{3\cdot 15\cdot 35\cdot 63}{8\cdot 24\cdot 48}=\frac{3^2\cdot 5^2\cdot 7^2}{2^{10}}</cmath>
  
 
Similarly, we can plug in <math>t=9,25,49</math> and get
 
Similarly, we can plug in <math>t=9,25,49</math> and get
  
<math>y^2=\frac{5\cdot 7\cdot 27\cdot 55}{8\cdot 16\cdot 40}=\frac{3^3\cdot 5\cdot 7\cdot 11}{2^{10}}</math>
+
<cmath>\begin{align*}
 +
y^2&=\frac{5\cdot 7\cdot 27\cdot 55}{8\cdot 16\cdot 40}=\frac{3^3\cdot 5\cdot 7\cdot 11}{2^{10}}\\
 +
z^2&=\frac{21\cdot 9\cdot 11\cdot 39}{24\cdot 16\cdot 24}=\frac{3^2\cdot 7\cdot 11\cdot 13}{2^{10}}\\
 +
w^2&=\frac{45\cdot 33\cdot 13\cdot 15}{48\cdot 40\cdot 24}=\frac{3^2\cdot 5\cdot 11\cdot 13}{2^{10}}</cmath>
  
<math>z^2=\frac{21\cdot 9\cdot 11\cdot 39}{24\cdot 16\cdot 24}=\frac{3^2\cdot 7\cdot 11\cdot 13}{2^{10}}</math>
+
Now adding them up,
  
<math>w^2=\frac{45\cdot 33\cdot 13\cdot 15}{48\cdot 40\cdot 24}=\frac{3^2\cdot 5\cdot 11\cdot 13}{2^{10}}</math>
+
<cmath>\begin{align*}z^2+w^2&=\frac{3^2\cdot 11\cdot 13(7+5)}{2^{10}}=\frac{3^3\cdot 11\cdot 13}{2^8}\\
 +
x^2+y^2&=\frac{3^2\cdot 5\cdot 7(5\cdot 7+3\cdot 11)}{2^{10}}=\frac{3^2\cdot 5\cdot 7\cdot 17}{2^8}\end{align*}</cmath>
  
 +
with a sum of
  
Now add them up...
+
<cmath>\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{036}.</cmath>
 
 
<math>z^2+w^2=\frac{3^2\cdot 11\cdot 13(7+5)}{2^{10}}=\frac{3^3\cdot 11\cdot 13}{2^8}</math>
 
 
 
<math>x^2+y^2=\frac{3^2\cdot 5\cdot 7(5\cdot 7+3\cdot 11)}{2^{10}}=\frac{3^2\cdot 5\cdot 7\cdot 17}{2^8}</math>
 
 
 
with a sum of
 
  
<math>\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=36</math>
 
 
== See also ==
 
== See also ==
 
{{AIME box|year=1984|num-b=14|after=Last Question}}
 
{{AIME box|year=1984|num-b=14|after=Last Question}}
* [[AIME Problems and Solutions]]
+
 
* [[American Invitational Mathematics Examination]]
+
[[Category:Intermediate Algebra Problems]]
* [[Mathematics competition resources]]
 

Revision as of 12:53, 1 January 2008

Problem

Determine $w^2+x^2+y^2+z^2$ if

$\frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1$
$\frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1$
$\frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1$
$\frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1$

Solution

For each of the values $t=4,16,36,64$, we have the equation

$x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)$ $+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25)$

$=(t-1)(t-9)(t-25)(t-49)-(t-4)(t-16)(t-36)(t-64)$

However, each side of the equation is a polynomial in $t$ of degree at most 3, and they have 4 common roots. Therefore, the polynomials must be equal.

Now we can plug in $t=1$ into the polynomial equation. Most terms drop, and we end up with

\[x^2(-8)(-24)(-48)=-(-3)(-15)(-35)(-63)\]

so that

\[x^2=\frac{3\cdot 15\cdot 35\cdot 63}{8\cdot 24\cdot 48}=\frac{3^2\cdot 5^2\cdot 7^2}{2^{10}}\]

Similarly, we can plug in $t=9,25,49$ and get

\begin{align*}
y^2&=\frac{5\cdot 7\cdot 27\cdot 55}{8\cdot 16\cdot 40}=\frac{3^3\cdot 5\cdot 7\cdot 11}{2^{10}}\\
z^2&=\frac{21\cdot 9\cdot 11\cdot 39}{24\cdot 16\cdot 24}=\frac{3^2\cdot 7\cdot 11\cdot 13}{2^{10}}\\
w^2&=\frac{45\cdot 33\cdot 13\cdot 15}{48\cdot 40\cdot 24}=\frac{3^2\cdot 5\cdot 11\cdot 13}{2^{10}} (Error compiling LaTeX. Unknown error_msg)

Now adding them up,

\begin{align*}z^2+w^2&=\frac{3^2\cdot 11\cdot 13(7+5)}{2^{10}}=\frac{3^3\cdot 11\cdot 13}{2^8}\\ x^2+y^2&=\frac{3^2\cdot 5\cdot 7(5\cdot 7+3\cdot 11)}{2^{10}}=\frac{3^2\cdot 5\cdot 7\cdot 17}{2^8}\end{align*}

with a sum of

\[\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{036}.\]

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions