# Difference between revisions of "1984 AIME Problems/Problem 9"

## Problem

In tetrahedron $ABCD$, edge $AB$ has length 3 cm. The area of face $ABC$ is $15\mbox{cm}^2$ and the area of face $ABD$ is $12 \mbox { cm}^2$. These two faces meet each other at a $30^\circ$ angle. Find the volume of the tetrahedron in $\mbox{cm}^3$.

## Solution 1

$[asy] /* modified version of olympiad modules */ import three; real markscalefactor = 0.03; path3 rightanglemark(triple A, triple B, triple C, real s=8) { triple P,Q,R; P=s*markscalefactor*unit(A-B)+B; R=s*markscalefactor*unit(C-B)+B; Q=P+R-B; return P--Q--R; } path3 anglemark(triple A, triple B, triple C, real t=8 ... real[] s) { triple M,N,P[],Q[]; path3 mark; int n=s.length; M=t*markscalefactor*unit(A-B)+B; N=t*markscalefactor*unit(C-B)+B; for (int i=0; i

Position face $ABC$ on the bottom. Since $[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}$, we find that $h_{ABD} = 8$. Because the problem does not specify, we may assume both $ABC$ and $ABD$ to be isosceles triangles. Thus, the height of $ABD$ forms a $30-60-90$ with the height of the tetrahedron. So, $h = \frac{1}{2} (8) = 4$. The volume of the tetrahedron is thus $\frac{1}{3}Bh = \frac{1}{3} \cdot15 \cdot 4 = \boxed{020}$.

## Solution 2 (Rigorous)

It is clear that $DX=8$ and $CX=10$ where $X$ is the foot of the perpendicular from $D$ and $C$ to side $AB$. Thus $[DXC]=\frac{ab\sin{c}}{2}=20=5*h \rightarrow h = 4$ where h is the height of the tetrahedron from $D$. Hence, the volume of the tetrahedron is $bh/3=15*4/3=\boxed{020}$ ~ ShreyJ

## Solution 3 (Sketchy)

Make faces $ABC$ and $ABD$ right triangles. This makes everything a lot easier. Then do everything in solution 1.