Difference between revisions of "1984 USAMO Problems/Problem 1"

(Solution 2)
(19 intermediate revisions by 8 users not shown)
Line 1: Line 1:
1984 USAMO Problem #1
+
==Problem==
  
Problem:
+
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
  
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
+
=== Solution 1 ===
 +
 
 +
 
 +
Using Vieta's formulas, we have:
 +
 
 +
<cmath>\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\\ abc+abd+acd+bcd &=-200,\\ abcd &=-1984.\\ \end{align*}</cmath>
 +
 
 +
 +
From the last of these equations, we see that <math>cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62</math>. Thus, the second equation becomes <math>-32+ac+ad+bc+bd+62=k</math>, and so <math>ac+ad+bc+bd=k-30</math>. The key insight is now to factor the left-hand side as a product of two binomials: <math>(a+b)(c+d)=k-30</math>, so that we now only need to determine <math>a+b</math> and <math>c+d</math> rather than all four of <math>a,b,c,d</math>.
 +
 
 +
Let <math>p=a+b</math> and <math>q=c+d</math>. Plugging our known values for <math>ab</math> and <math>cd</math> into the third Vieta equation, <math>-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)</math>, we have <math>-200 = -32(c+d) + 62(a+b) = 62p-32q</math>. Moreover, the first Vieta equation, <math>a+b+c+d=18</math>, gives <math>p+q=18</math>. Thus we have two linear equations in <math>p</math> and <math>q</math>, which we solve to obtain <math>p=4</math> and <math>q=14</math>.  
 +
 
 +
Therefore, we have <math>(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30</math>, yielding <math>k=4\cdot 14+30 = \boxed{86}</math>.
 +
 
 +
=== Solution 2 ===
  
Solution:
+
We start as before: <math>ab=-32</math> and <math>cd=62</math>. We now observe that a and b must be the roots of a quadratic, <math>x^2+rx-32</math>, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic <math>x^2+sx+62</math>.
  
Let the four roots be <math>a,b,c,d</math>. By Vieta's Formulas, we have the following:
+
Now
  
*<math>ab = - 32</math>
+
<cmath> \begin{align*}x^4-18x^3+kx^2+200x-1984 =& (x^2+rx-32)(x^2+sx+62)\\  =& x^4+(r+s)x^3+(62-32+rs)x^2\\
*<math>abcd = - 1984</math>
+
&+(62s-32r)x-1984.\end{align*} </cmath>
*<math>cd = 62</math>
 
*<math>a + b + c + d = 18</math>*
 
*<math>ab + ac + ad + bc + bd + cd = k</math>
 
*<math>abc + abd + acd + bcd = - 200</math>
 
  
Substituting given values obtains the following:
+
Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math>
  
*<math>ac + ad + bc + bd = k - 62 + 32 = k - 30</math>
+
== Video Solution ==
*<math>(a + b)(c + d) = k - 30</math>
+
https://youtu.be/5QdPQ3__a7I?t=589
*<math>- 32c + 62b + 62a - 32d = - 200</math>
 
*<math>31(a + b) - 16(c + d) = - 100</math>
 
  
Multiplying the * equation by 16 gives
+
~ pi_is_3.14
  
<math>16(a + b) + 16(c + d) = 288</math>. Adding it to the previous equation gives
+
==See Also==
  
*<math>47(a + b) = 188</math>
+
{{USAMO box|year=1984|before=First<br>Problem|num-a=2}}
*<math>a + b = 4</math>
+
{{MAA Notice}}
*<math>c + d = 18 - 4 = 14</math>
+
[[Category:Intermediate Algebra Problems]]
*<math>(a + b)(c + d) = 4(14) = 56 = k - 30</math>
 
*<math>k = \boxed{86}</math>
 

Revision as of 22:46, 17 January 2021

Problem

In the polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$, the product of $2$ of its roots is $- 32$. Find $k$.

Solution 1

Using Vieta's formulas, we have:

\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\\ abc+abd+acd+bcd &=-200,\\ abcd &=-1984.\\ \end{align*}


From the last of these equations, we see that $cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62$. Thus, the second equation becomes $-32+ac+ad+bc+bd+62=k$, and so $ac+ad+bc+bd=k-30$. The key insight is now to factor the left-hand side as a product of two binomials: $(a+b)(c+d)=k-30$, so that we now only need to determine $a+b$ and $c+d$ rather than all four of $a,b,c,d$.

Let $p=a+b$ and $q=c+d$. Plugging our known values for $ab$ and $cd$ into the third Vieta equation, $-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)$, we have $-200 = -32(c+d) + 62(a+b) = 62p-32q$. Moreover, the first Vieta equation, $a+b+c+d=18$, gives $p+q=18$. Thus we have two linear equations in $p$ and $q$, which we solve to obtain $p=4$ and $q=14$.

Therefore, we have $(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30$, yielding $k=4\cdot 14+30 = \boxed{86}$.

Solution 2

We start as before: $ab=-32$ and $cd=62$. We now observe that a and b must be the roots of a quadratic, $x^2+rx-32$, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic $x^2+sx+62$.

Now

\begin{align*}x^4-18x^3+kx^2+200x-1984 =& (x^2+rx-32)(x^2+sx+62)\\  =& x^4+(r+s)x^3+(62-32+rs)x^2\\ &+(62s-32r)x-1984.\end{align*}

Equating the coefficients of $x^3$ and $x$ with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of $x^2$ and get $k=\boxed{86}.$

Video Solution

https://youtu.be/5QdPQ3__a7I?t=589

~ pi_is_3.14

See Also

1984 USAMO (ProblemsResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png