Difference between revisions of "1984 USAMO Problems/Problem 1"

(Solution)
(Solution 3)
(15 intermediate revisions by 8 users not shown)
Line 3: Line 3:
 
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
 
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
  
==Solution==
+
=== Solution 1 (ingenious)===
  
Let the four roots be <math>a, b, c, and d</math>, so that <math>ab=-32</math>. From here we show two methods; the second is more slick, but harder to see.
 
 
Solution #1
 
  
 
Using Vieta's formulas, we have:  
 
Using Vieta's formulas, we have:  
  
<math>\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\\ abc+abd+acd+bcd &=-200,\\ abcd &=-1984.\\ \end{align*}</math>  
+
<cmath>\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\\ abc+abd+acd+bcd &=-200,\\ abcd &=-1984.\\ \end{align*}</cmath>  
  
 
   
 
   
Line 18: Line 15:
 
Let <math>p=a+b</math> and <math>q=c+d</math>. Plugging our known values for <math>ab</math> and <math>cd</math> into the third Vieta equation, <math>-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)</math>, we have <math>-200 = -32(c+d) + 62(a+b) = 62p-32q</math>. Moreover, the first Vieta equation, <math>a+b+c+d=18</math>, gives <math>p+q=18</math>. Thus we have two linear equations in <math>p</math> and <math>q</math>, which we solve to obtain <math>p=4</math> and <math>q=14</math>.  
 
Let <math>p=a+b</math> and <math>q=c+d</math>. Plugging our known values for <math>ab</math> and <math>cd</math> into the third Vieta equation, <math>-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)</math>, we have <math>-200 = -32(c+d) + 62(a+b) = 62p-32q</math>. Moreover, the first Vieta equation, <math>a+b+c+d=18</math>, gives <math>p+q=18</math>. Thus we have two linear equations in <math>p</math> and <math>q</math>, which we solve to obtain <math>p=4</math> and <math>q=14</math>.  
  
Therefore, we have <math>(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30</math>, yielding <math>k=4\cdot 14+30 = \boxed{86}</math>.  
+
Therefore, we have <math>(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30</math>, yielding <math>k=4\cdot 14+30 = \boxed{86}</math>.
  
Solution #2 (sketch)  
+
=== Solution 2 (cool)===
  
 
We start as before: <math>ab=-32</math> and <math>cd=62</math>. We now observe that a and b must be the roots of a quadratic, <math>x^2+rx-32</math>, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic <math>x^2+sx+62</math>.  
 
We start as before: <math>ab=-32</math> and <math>cd=62</math>. We now observe that a and b must be the roots of a quadratic, <math>x^2+rx-32</math>, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic <math>x^2+sx+62</math>.  
Line 26: Line 23:
 
Now  
 
Now  
  
<math><cmath> \begin{align*}x^4-18x^3+kx^2+200x-1984 &= (x^2+rx-32)(x^2+sx+62)\\ & = x^4+(r+s)x^3+(62-32+rs)x^2+(62s-32r)x-1984.\end{align*} </cmath></math>
+
<cmath> \begin{align*}x^4-18x^3+kx^2+200x-1984 =& (x^2+rx-32)(x^2+sx+62)\\ =& x^4+(r+s)x^3+(62-32+rs)x^2\\
 +
&+(62s-32r)x-1984.\end{align*} </cmath>
  
 
Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math>
 
Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math>
 +
 +
=== Solution 3 ===
 +
Let the roots of the equation be <math>a,b,c,</math> and <math>d</math>. By Vieta's,
 +
\begin{align*}
 +
a+b+c+d &= 18\\
 +
ab+ac+ad+bc+bd+cd &= k\\
 +
abc+abd+acd+bcd &=-200\\
 +
abcd &=-1984.\\
 +
\end{align*}
 +
Since <math>abcd=-1984</math> and <math>ab=-32</math>, then, <math>cd=62</math>. Notice that<cmath>abc + abd + acd + bcd = -200</cmath>can be factored into<cmath>ab(c+d)+cd(a+b)=-32(c+d)+62(a+b).</cmath>From the first equation, <math>c+d=18-a-b</math>. Substituting it back into the equation,<cmath>-32(18-a-b)+62(a+b)=-200</cmath>Expanding,<cmath>-576+32a+32b+62a+62b=-200 \implies 94a+94b=376</cmath>So, <math>a+b=4</math> and <math>c+d=14</math>. Notice that<cmath>ab+ac+ad+bc+bd+cd=ab+cd+(a+b)(c+d)</cmath>Plugging all our values in,<cmath>-32+62+4(14)=\boxed{86}.</cmath>
 +
 +
~ kante314
 +
 +
== Video Solution ==
 +
https://youtu.be/5QdPQ3__a7I?t=589
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==

Revision as of 20:58, 28 August 2021

Problem

In the polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$, the product of $2$ of its roots is $- 32$. Find $k$.

Solution 1 (ingenious)

Using Vieta's formulas, we have:

\begin{align*}a+b+c+d &= 18,\\ ab+ac+ad+bc+bd+cd &= k,\\ abc+abd+acd+bcd &=-200,\\ abcd &=-1984.\\ \end{align*}


From the last of these equations, we see that $cd = \frac{abcd}{ab} = \frac{-1984}{-32} = 62$. Thus, the second equation becomes $-32+ac+ad+bc+bd+62=k$, and so $ac+ad+bc+bd=k-30$. The key insight is now to factor the left-hand side as a product of two binomials: $(a+b)(c+d)=k-30$, so that we now only need to determine $a+b$ and $c+d$ rather than all four of $a,b,c,d$.

Let $p=a+b$ and $q=c+d$. Plugging our known values for $ab$ and $cd$ into the third Vieta equation, $-200 = abc+abd + acd + bcd = ab(c+d) + cd(a+b)$, we have $-200 = -32(c+d) + 62(a+b) = 62p-32q$. Moreover, the first Vieta equation, $a+b+c+d=18$, gives $p+q=18$. Thus we have two linear equations in $p$ and $q$, which we solve to obtain $p=4$ and $q=14$.

Therefore, we have $(\underbrace{a+b}_4)(\underbrace{c+d}_{14}) = k-30$, yielding $k=4\cdot 14+30 = \boxed{86}$.

Solution 2 (cool)

We start as before: $ab=-32$ and $cd=62$. We now observe that a and b must be the roots of a quadratic, $x^2+rx-32$, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic $x^2+sx+62$.

Now

\begin{align*}x^4-18x^3+kx^2+200x-1984 =& (x^2+rx-32)(x^2+sx+62)\\  =& x^4+(r+s)x^3+(62-32+rs)x^2\\ &+(62s-32r)x-1984.\end{align*}

Equating the coefficients of $x^3$ and $x$ with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of $x^2$ and get $k=\boxed{86}.$

Solution 3

Let the roots of the equation be $a,b,c,$ and $d$. By Vieta's, \begin{align*} a+b+c+d &= 18\\ ab+ac+ad+bc+bd+cd &= k\\ abc+abd+acd+bcd &=-200\\ abcd &=-1984.\\ \end{align*} Since $abcd=-1984$ and $ab=-32$, then, $cd=62$. Notice that\[abc + abd + acd + bcd = -200\]can be factored into\[ab(c+d)+cd(a+b)=-32(c+d)+62(a+b).\]From the first equation, $c+d=18-a-b$. Substituting it back into the equation,\[-32(18-a-b)+62(a+b)=-200\]Expanding,\[-576+32a+32b+62a+62b=-200 \implies 94a+94b=376\]So, $a+b=4$ and $c+d=14$. Notice that\[ab+ac+ad+bc+bd+cd=ab+cd+(a+b)(c+d)\]Plugging all our values in,\[-32+62+4(14)=\boxed{86}.\]

~ kante314

Video Solution

https://youtu.be/5QdPQ3__a7I?t=589

~ pi_is_3.14

See Also

1984 USAMO (ProblemsResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png