Difference between revisions of "1985 AHSME Problems"

(Created page with "==Problem 1== If <math> 2x+1=8 </math>, then <math> 4x+1= </math> <math> \mathrm{(A)\ } 15 \qquad \mathrm{(B) \ }16 \qquad \mathrm{(C) \ } 17 \qquad \mathrm{(D) \ } 18 \qquad ...")
 
Line 4: Line 4:
 
<math> \mathrm{(A)\ } 15 \qquad \mathrm{(B) \ }16 \qquad \mathrm{(C) \  } 17 \qquad \mathrm{(D) \  } 18 \qquad \mathrm{(E) \  }19  </math>
 
<math> \mathrm{(A)\ } 15 \qquad \mathrm{(B) \ }16 \qquad \mathrm{(C) \  } 17 \qquad \mathrm{(D) \  } 18 \qquad \mathrm{(E) \  }19  </math>
  
 +
[[1985 AHSME Problems/Problem 1|Solution]]
 
==Problem 2==
 
==Problem 2==
 
In an arcade game, the "monster" is the shaded sector of a [[circle]] of [[radius]] <math> 1 </math> cm, as shown in the figure. The missing piece (the mouth) has central [[angle]] <math> 60^\circ </math>. What is the [[perimeter]] of the monster in cm?
 
In an arcade game, the "monster" is the shaded sector of a [[circle]] of [[radius]] <math> 1 </math> cm, as shown in the figure. The missing piece (the mouth) has central [[angle]] <math> 60^\circ </math>. What is the [[perimeter]] of the monster in cm?
Line 16: Line 17:
 
<math> \mathrm{(A)\ } \pi+2 \qquad \mathrm{(B) \ }2\pi \qquad \mathrm{(C) \  } \frac{5}{3}\pi \qquad \mathrm{(D) \  } \frac{5}{6}\pi+2 \qquad \mathrm{(E) \  }\frac{5}{3}\pi+2  </math>
 
<math> \mathrm{(A)\ } \pi+2 \qquad \mathrm{(B) \ }2\pi \qquad \mathrm{(C) \  } \frac{5}{3}\pi \qquad \mathrm{(D) \  } \frac{5}{6}\pi+2 \qquad \mathrm{(E) \  }\frac{5}{3}\pi+2  </math>
  
 +
[[1985 AHSME Problems/Problem 2|Solution]]
 
==Problem 3==
 
==Problem 3==
 
In right <math> \triangle ABC </math> with legs <math> 5 </math> and <math> 12 </math>, arcs of circles are drawn, one with center <math> A </math> and radius <math> 12 </math>, the other with center <math> B </math> and radius <math> 5 </math>. They intersect the [[hypotenuse]] at <math> M </math> and <math> N </math>. Then, <math> MN </math> has length:  
 
In right <math> \triangle ABC </math> with legs <math> 5 </math> and <math> 12 </math>, arcs of circles are drawn, one with center <math> A </math> and radius <math> 12 </math>, the other with center <math> B </math> and radius <math> 5 </math>. They intersect the [[hypotenuse]] at <math> M </math> and <math> N </math>. Then, <math> MN </math> has length:  
Line 35: Line 37:
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }\frac{13}{5} \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }\frac{24}{5}  </math>
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }\frac{13}{5} \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }\frac{24}{5}  </math>
  
 +
[[1985 AHSME Problems/Problem 3|Solution]]
 
==Problem 4==
 
==Problem 4==
 
A large bag of coins contains pennies, dimes, and quarters. There are twice as many dimes as pennies and three times as many quarters as dimes. An amount of money which could be in the bag is
 
A large bag of coins contains pennies, dimes, and quarters. There are twice as many dimes as pennies and three times as many quarters as dimes. An amount of money which could be in the bag is
Line 40: Line 43:
 
<math> \mathrm{(A)\ } </math>&#036;<math>306 \qquad \mathrm{(B) \ }  </math>&#036;<math>333 \qquad \mathrm{(C)\ } </math>&#036;<math>342 \qquad \mathrm{(D) \  }  </math>&#036;<math>348 \qquad \mathrm{(E) \  }  </math>&#036;<math>360  </math>
 
<math> \mathrm{(A)\ } </math>&#036;<math>306 \qquad \mathrm{(B) \ }  </math>&#036;<math>333 \qquad \mathrm{(C)\ } </math>&#036;<math>342 \qquad \mathrm{(D) \  }  </math>&#036;<math>348 \qquad \mathrm{(E) \  }  </math>&#036;<math>360  </math>
  
 +
[[1985 AHSME Problems/Problem 4|Solution]]
 
==Problem 5==
 
==Problem 5==
 
Which terms must be removed from the sum
 
Which terms must be removed from the sum
Line 49: Line 53:
 
<math> \mathrm{(A)\ } \frac{1}{4}\text{ and }\frac{1}{8} \qquad \mathrm{(B) \ }\frac{1}{4}\text{ and }\frac{1}{12} \qquad \mathrm{(C) \  } \frac{1}{8}\text{ and }\frac{1}{12} \qquad \mathrm{(D) \  } \frac{1}{6}\text{ and }\frac{1}{10} \qquad \mathrm{(E) \  }\frac{1}{8}\text{ and }\frac{1}{10}  </math>
 
<math> \mathrm{(A)\ } \frac{1}{4}\text{ and }\frac{1}{8} \qquad \mathrm{(B) \ }\frac{1}{4}\text{ and }\frac{1}{12} \qquad \mathrm{(C) \  } \frac{1}{8}\text{ and }\frac{1}{12} \qquad \mathrm{(D) \  } \frac{1}{6}\text{ and }\frac{1}{10} \qquad \mathrm{(E) \  }\frac{1}{8}\text{ and }\frac{1}{10}  </math>
  
 +
[[1985 AHSME Problems/Problem 5|Solution]]
 
==Problem 6==
 
==Problem 6==
 
One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is <math> \frac{2}{3} </math> of the [[probability]] that a girl is chosen. The [[ratio]] of the number of boys to the total number of boys and girls is
 
One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is <math> \frac{2}{3} </math> of the [[probability]] that a girl is chosen. The [[ratio]] of the number of boys to the total number of boys and girls is
Line 54: Line 59:
 
<math> \mathrm{(A)\ } \frac{1}{3} \qquad \mathrm{(B) \ }\frac{2}{5} \qquad \mathrm{(C) \  } \frac{1}{2} \qquad \mathrm{(D) \  } \frac{3}{5} \qquad \mathrm{(E) \  }\frac{2}{3}  </math>
 
<math> \mathrm{(A)\ } \frac{1}{3} \qquad \mathrm{(B) \ }\frac{2}{5} \qquad \mathrm{(C) \  } \frac{1}{2} \qquad \mathrm{(D) \  } \frac{3}{5} \qquad \mathrm{(E) \  }\frac{2}{3}  </math>
  
 +
[[1985 AHSME Problems/Problem 6|Solution]]
 
==Problem 7==
 
==Problem 7==
 
In some computer languages (such as APL), when there are no parentheses in an algebraic expression, the operations are grouped from left to right. Thus, <math> a\times b-c </math> in such languages means the same as <math> a(b-c) </math> in ordinary algebraic notation. If <math> a\div b-c+d </math> is evaluated in such a language, the result in ordinary algebraic notation would be
 
In some computer languages (such as APL), when there are no parentheses in an algebraic expression, the operations are grouped from left to right. Thus, <math> a\times b-c </math> in such languages means the same as <math> a(b-c) </math> in ordinary algebraic notation. If <math> a\div b-c+d </math> is evaluated in such a language, the result in ordinary algebraic notation would be
Line 59: Line 65:
 
<math> \mathrm{(A)\ } \frac{a}{b}-c+d \qquad \mathrm{(B) \ }\frac{a}{b}-c-d \qquad \mathrm{(C) \  } \frac{d+c-b}{a} \qquad \mathrm{(D) \  } \frac{a}{b-c+d} \qquad \mathrm{(E) \  }\frac{a}{b-c-d}  </math>
 
<math> \mathrm{(A)\ } \frac{a}{b}-c+d \qquad \mathrm{(B) \ }\frac{a}{b}-c-d \qquad \mathrm{(C) \  } \frac{d+c-b}{a} \qquad \mathrm{(D) \  } \frac{a}{b-c+d} \qquad \mathrm{(E) \  }\frac{a}{b-c-d}  </math>
  
 +
[[1985 AHSME Problems/Problem 7|Solution]]
 
==Problem 8==
 
==Problem 8==
 
Let <math> a, a', b, </math> and <math> b' </math> be real numbers with <math> a </math> and <math> a' </math> nonzero. The solution to <math> ax+b </math> is less than the solution to <math> a'x+b'=0 </math> if and only if  
 
Let <math> a, a', b, </math> and <math> b' </math> be real numbers with <math> a </math> and <math> a' </math> nonzero. The solution to <math> ax+b </math> is less than the solution to <math> a'x+b'=0 </math> if and only if  
Line 66: Line 73:
 
<math> \mathrm{(E) \  }\frac{b'}{a'}<\frac{b}{a}  </math>
 
<math> \mathrm{(E) \  }\frac{b'}{a'}<\frac{b}{a}  </math>
  
 +
[[1985 AHSME Problems/Problem 8|Solution]]
 
==Problem 9==
 
==Problem 9==
 
The odd positive integers <math> 1, 3, 5, 6, \cdots </math>, are arranged into five columns continuing with the pattern shown on the right. Counting from the left, the column in which <math> 1985 </math> appears in is the
 
The odd positive integers <math> 1, 3, 5, 6, \cdots </math>, are arranged into five columns continuing with the pattern shown on the right. Counting from the left, the column in which <math> 1985 </math> appears in is the
Line 89: Line 97:
 
<math> \mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \  } \text{third} \qquad \mathrm{(D) \  } \text{fourth} \qquad \mathrm{(E) \  }\text{fifth}  </math>
 
<math> \mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \  } \text{third} \qquad \mathrm{(D) \  } \text{fourth} \qquad \mathrm{(E) \  }\text{fifth}  </math>
  
 +
[[1985 AHSME Problems/Problem 9|Solution]]
 
==Problem 10==
 
==Problem 10==
 
An arbitrary [[circle]] can intersect the [[graph]] <math> y=\sin x </math> in
 
An arbitrary [[circle]] can intersect the [[graph]] <math> y=\sin x </math> in
Line 94: Line 103:
 
<math> \mathrm{(A)  } \text{at most }2\text{ points} \qquad \mathrm{(B)  }\text{at most }4\text{ points} \qquad \mathrm{(C)  } \text{at most }6\text{ points} \qquad \mathrm{(D)  } \text{at most }8\text{ points}\qquad \mathrm{(E)  }\text{more than }16\text{ points}  </math>
 
<math> \mathrm{(A)  } \text{at most }2\text{ points} \qquad \mathrm{(B)  }\text{at most }4\text{ points} \qquad \mathrm{(C)  } \text{at most }6\text{ points} \qquad \mathrm{(D)  } \text{at most }8\text{ points}\qquad \mathrm{(E)  }\text{more than }16\text{ points}  </math>
  
 +
[[1985 AHSME Problems/Problem 10|Solution]]
 
==Problem 11==
 
==Problem 11==
 
How many '''distinguishable''' rearrangements of the letters in CONTEST have both the vowels first? (For instance, OETCNST is one such arrangement but OTETSNC is not.)
 
How many '''distinguishable''' rearrangements of the letters in CONTEST have both the vowels first? (For instance, OETCNST is one such arrangement but OTETSNC is not.)
Line 99: Line 109:
 
<math> \mathrm{(A)\ } 60 \qquad \mathrm{(B) \ }120 \qquad \mathrm{(C) \  } 240 \qquad \mathrm{(D) \  } 720 \qquad \mathrm{(E) \  }2520 </math>
 
<math> \mathrm{(A)\ } 60 \qquad \mathrm{(B) \ }120 \qquad \mathrm{(C) \  } 240 \qquad \mathrm{(D) \  } 720 \qquad \mathrm{(E) \  }2520 </math>
  
 +
[[1985 AHSME Problems/Problem 11|Solution]]
 
==Problem 12==
 
==Problem 12==
 
Let's write <math> p, q, </math> and <math> r </math> as three distinct [[prime number]]s, where <math> 1 </math> is not a prime. Which of the following is the smallest positive [[perfect cube]] leaving <math> n=pq^2r^4 </math> as a [[divisor]]?
 
Let's write <math> p, q, </math> and <math> r </math> as three distinct [[prime number]]s, where <math> 1 </math> is not a prime. Which of the following is the smallest positive [[perfect cube]] leaving <math> n=pq^2r^4 </math> as a [[divisor]]?
Line 104: Line 115:
 
<math> \mathrm{(A)\ } p^8q^8r^8 \qquad \mathrm{(B) \ }(pq^2r^2)^3 \qquad \mathrm{(C) \  } (p^2q^2r^2)^3 \qquad \mathrm{(D) \  } (pqr^2)^3 \qquad \mathrm{(E) \  }4p^3q^3r^3 </math>
 
<math> \mathrm{(A)\ } p^8q^8r^8 \qquad \mathrm{(B) \ }(pq^2r^2)^3 \qquad \mathrm{(C) \  } (p^2q^2r^2)^3 \qquad \mathrm{(D) \  } (pqr^2)^3 \qquad \mathrm{(E) \  }4p^3q^3r^3 </math>
  
 +
[[1985 AHSME Problems/Problem 12|Solution]]
 
==Problem 13==
 
==Problem 13==
 
Pegs are put in a board <math> 1 </math> unit apart both horizontally and vertically. A rubber band is stretched over <math> 4 </math> pegs as shown in the figure, forming a [[quadrilateral]]. Its [[area]] in square units is
 
Pegs are put in a board <math> 1 </math> unit apart both horizontally and vertically. A rubber band is stretched over <math> 4 </math> pegs as shown in the figure, forming a [[quadrilateral]]. Its [[area]] in square units is
Line 117: Line 129:
 
<math> \mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }4.5 \qquad \mathrm{(C) \  } 5 \qquad \mathrm{(D) \  } 5.5 \qquad \mathrm{(E) \  }6 </math>
 
<math> \mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }4.5 \qquad \mathrm{(C) \  } 5 \qquad \mathrm{(D) \  } 5.5 \qquad \mathrm{(E) \  }6 </math>
  
 +
[[1985 AHSME Problems/Problem 13|Solution]]
 
==Problem 14==
 
==Problem 14==
 
Exactly three of the interior angles of a convex [[polygon]] are obtuse. What is the maximum number of sides of such a polygon?
 
Exactly three of the interior angles of a convex [[polygon]] are obtuse. What is the maximum number of sides of such a polygon?
Line 122: Line 135:
 
<math> \mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }5 \qquad \mathrm{(C) \  } 6 \qquad \mathrm{(D) \  } 7 \qquad \mathrm{(E) \  }8 </math>
 
<math> \mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }5 \qquad \mathrm{(C) \  } 6 \qquad \mathrm{(D) \  } 7 \qquad \mathrm{(E) \  }8 </math>
  
 +
[[1985 AHSME Problems/Problem 14|Solution]]
 
==Problem 15==
 
==Problem 15==
 
If <math> a </math> and <math> b </math> are positive numbers such that <math> a^b=b^a </math> and <math> b=9a </math>, then the value of <math> a </math> is:
 
If <math> a </math> and <math> b </math> are positive numbers such that <math> a^b=b^a </math> and <math> b=9a </math>, then the value of <math> a </math> is:
Line 127: Line 141:
 
<math> \mathrm{(A)\ } 9 \qquad \mathrm{(B) \ }\frac{1}{9} \qquad \mathrm{(C) \  } \sqrt[9]{9} \qquad \mathrm{(D) \  } \sqrt[3]{9} \qquad \mathrm{(E) \  }\sqrt[4]{3} </math>
 
<math> \mathrm{(A)\ } 9 \qquad \mathrm{(B) \ }\frac{1}{9} \qquad \mathrm{(C) \  } \sqrt[9]{9} \qquad \mathrm{(D) \  } \sqrt[3]{9} \qquad \mathrm{(E) \  }\sqrt[4]{3} </math>
  
 +
[[1985 AHSME Problems/Problem 15|Solution]]
 
==Problem 16==
 
==Problem 16==
 
If <math> A=20^\circ </math> and <math> B=25^\circ </math>, then the value of <math> (1+\tan A)(1+\tan B) </math> is
 
If <math> A=20^\circ </math> and <math> B=25^\circ </math>, then the value of <math> (1+\tan A)(1+\tan B) </math> is
Line 132: Line 147:
 
<math> \mathrm{(A)\ } \sqrt{3} \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 1+\sqrt{2} \qquad \mathrm{(D) \  } 2(\tan A+\tan B) \qquad \mathrm{(E) \  }\text{none of these} </math>
 
<math> \mathrm{(A)\ } \sqrt{3} \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 1+\sqrt{2} \qquad \mathrm{(D) \  } 2(\tan A+\tan B) \qquad \mathrm{(E) \  }\text{none of these} </math>
  
 +
[[1985 AHSME Problems/Problem 16|Solution]]
 
==Problem 17==
 
==Problem 17==
 
[[Diagonal]] <math> DB </math> of [[rectangle]] <math> ABCD </math> is divided into <math> 3 </math> segments of length <math> 1 </math> by [[parallel]] lines <math> L </math> and <math> L' </math> that pass through <math> A </math> and <math> C </math> and are [[perpendicular]] to <math> DB </math>. The area of <math> ABCD </math>, rounded to the nearest tenth, is  
 
[[Diagonal]] <math> DB </math> of [[rectangle]] <math> ABCD </math> is divided into <math> 3 </math> segments of length <math> 1 </math> by [[parallel]] lines <math> L </math> and <math> L' </math> that pass through <math> A </math> and <math> C </math> and are [[perpendicular]] to <math> DB </math>. The area of <math> ABCD </math>, rounded to the nearest tenth, is  
Line 157: Line 173:
 
<math> \mathrm{(A)\ } 4.1 \qquad \mathrm{(B) \ }4.2 \qquad \mathrm{(C) \  } 4.3 \qquad \mathrm{(D) \  } 4.4 \qquad \mathrm{(E) \  }4.5 </math>
 
<math> \mathrm{(A)\ } 4.1 \qquad \mathrm{(B) \ }4.2 \qquad \mathrm{(C) \  } 4.3 \qquad \mathrm{(D) \  } 4.4 \qquad \mathrm{(E) \  }4.5 </math>
  
 +
[[1985 AHSME Problems/Problem 17|Solution]]
 
==Problem 18==
 
==Problem 18==
 
Six bags of marbles contain <math> 18, 19, 21, 23, 25, </math> and <math> 34 </math> marbles, respectively. One bag contains chipped marbles only. The other <math> 5 </math> bags contain no chipped marbles. Jane takes three of the bags and George takes two of the others. Only the bag of chipped marbles remains. If jane gets twice as many marbles as George, how many chipped marbles are there?
 
Six bags of marbles contain <math> 18, 19, 21, 23, 25, </math> and <math> 34 </math> marbles, respectively. One bag contains chipped marbles only. The other <math> 5 </math> bags contain no chipped marbles. Jane takes three of the bags and George takes two of the others. Only the bag of chipped marbles remains. If jane gets twice as many marbles as George, how many chipped marbles are there?
Line 162: Line 179:
 
<math> \mathrm{(A)\ } 18 \qquad \mathrm{(B) \ }19 \qquad \mathrm{(C) \  } 21 \qquad \mathrm{(D) \  } 23 \qquad \mathrm{(E) \  }25 </math>
 
<math> \mathrm{(A)\ } 18 \qquad \mathrm{(B) \ }19 \qquad \mathrm{(C) \  } 21 \qquad \mathrm{(D) \  } 23 \qquad \mathrm{(E) \  }25 </math>
  
 +
[[1985 AHSME Problems/Problem 18|Solution]]
 
==Problem 19==
 
==Problem 19==
 
Consider the graphs <math> y=Ax^2 </math> and <math> y^2+3=x^2+4y </math>, where <math> A </math> is a positive constant and <math> x </math> and <math> y </math> are real variables. In how many points do the two graphs intersect?
 
Consider the graphs <math> y=Ax^2 </math> and <math> y^2+3=x^2+4y </math>, where <math> A </math> is a positive constant and <math> x </math> and <math> y </math> are real variables. In how many points do the two graphs intersect?
Line 171: Line 189:
 
<math>  \mathrm{(D) \  }0\text{ for at least one positive value of }A \qquad \mathrm{(E) \ }\text{none of these} </math>
 
<math>  \mathrm{(D) \  }0\text{ for at least one positive value of }A \qquad \mathrm{(E) \ }\text{none of these} </math>
  
 +
[[1985 AHSME Problems/Problem 19|Solution]]
 
==Problem 20==
 
==Problem 20==
 
A wooden [[cube]] with edge length <math> n </math> units (where <math> n </math> is an integer <math> >2 </math>) is painted black all over. By slices parallel to its faces, the cube is cut into <math> n^3 </math> smaller cubes each of unit length. If the number of smaller cubes with just one face painted black is equal to the number of smaller cubes completely free of paint, what is <math> n </math>?
 
A wooden [[cube]] with edge length <math> n </math> units (where <math> n </math> is an integer <math> >2 </math>) is painted black all over. By slices parallel to its faces, the cube is cut into <math> n^3 </math> smaller cubes each of unit length. If the number of smaller cubes with just one face painted black is equal to the number of smaller cubes completely free of paint, what is <math> n </math>?
Line 176: Line 195:
 
<math> \mathrm{(A)\ } 5 \qquad \mathrm{(B) \ }6 \qquad \mathrm{(C) \  } 7 \qquad \mathrm{(D) \  } 8 \qquad \mathrm{(E) \  }\text{none of these} </math>
 
<math> \mathrm{(A)\ } 5 \qquad \mathrm{(B) \ }6 \qquad \mathrm{(C) \  } 7 \qquad \mathrm{(D) \  } 8 \qquad \mathrm{(E) \  }\text{none of these} </math>
  
 +
[[1985 AHSME Problems/Problem 20|Solution]]
 
==Problem 21==
 
==Problem 21==
 
How many integers <math> x </math> satisfy the equation <math> (x^2-x-1)^{x+2}=1 </math>
 
How many integers <math> x </math> satisfy the equation <math> (x^2-x-1)^{x+2}=1 </math>
Line 181: Line 201:
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of these} </math>
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of these} </math>
  
 +
[[1985 AHSME Problems/Problem 21|Solution]]
 
==Problem 22==
 
==Problem 22==
 
In a circle with center <math> O </math>, <math> AD </math> is a [[diameter]], <math> ABC </math> is a [[chord]], <math> BO=5 </math>, and <math> \angle ABO=\stackrel{\frown}{CD}=60^\circ </math>. Then the length of <math> BC </math> is:
 
In a circle with center <math> O </math>, <math> AD </math> is a [[diameter]], <math> ABC </math> is a [[chord]], <math> BO=5 </math>, and <math> \angle ABO=\stackrel{\frown}{CD}=60^\circ </math>. Then the length of <math> BC </math> is:
Line 200: Line 221:
 
<math> \mathrm{(A)\ } 3 \qquad \mathrm{(B) \ }3+\sqrt{3} \qquad \mathrm{(C) \  } 5-\frac{\sqrt{3}}{2} \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of the above} </math>
 
<math> \mathrm{(A)\ } 3 \qquad \mathrm{(B) \ }3+\sqrt{3} \qquad \mathrm{(C) \  } 5-\frac{\sqrt{3}}{2} \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of the above} </math>
  
 +
[[1985 AHSME Problems/Problem 22|Solution]]
 
==Problem 23==
 
==Problem 23==
 
If <math> x=\frac{-1+i\sqrt{3}}{2} </math> and <math> y=\frac{-1-i\sqrt{3}}{2} </math>, where <math> i^2=-1 </math>, then which of the following is ''not'' correct?
 
If <math> x=\frac{-1+i\sqrt{3}}{2} </math> and <math> y=\frac{-1-i\sqrt{3}}{2} </math>, where <math> i^2=-1 </math>, then which of the following is ''not'' correct?
Line 207: Line 229:
 
<math> \mathrm{(D) \  } x^{11}+y^{11}=-1 \qquad \mathrm{(E) \  }x^{13}+y^{13}=-1 </math>
 
<math> \mathrm{(D) \  } x^{11}+y^{11}=-1 \qquad \mathrm{(E) \  }x^{13}+y^{13}=-1 </math>
  
 +
[[1985 AHSME Problems/Problem 23|Solution]]
 
==Problem 24==
 
==Problem 24==
 
A non-zero [[digit]] is chosen in such a way that the probability of choosing digit <math> d </math> is <math> \log_{10}{(d+1)}-\log_{10}{d} </math>. The probability that the digit <math> 2 </math> is chosen is exactly <math> \frac{1}{2} </math> the probability that the digit is chosen in the set
 
A non-zero [[digit]] is chosen in such a way that the probability of choosing digit <math> d </math> is <math> \log_{10}{(d+1)}-\log_{10}{d} </math>. The probability that the digit <math> 2 </math> is chosen is exactly <math> \frac{1}{2} </math> the probability that the digit is chosen in the set
Line 212: Line 235:
 
<math> \mathrm{(A)\ } \{2, 3\} \qquad \mathrm{(B) \ }\{3, 4\} \qquad \mathrm{(C) \  } \{4, 5, 6, 7, 8\} \qquad \mathrm{(D) \  } \{5, 6, 7, 8, 9\} \qquad \mathrm{(E) \  }\{4, 5, 6, 7, 8, 9\} </math>
 
<math> \mathrm{(A)\ } \{2, 3\} \qquad \mathrm{(B) \ }\{3, 4\} \qquad \mathrm{(C) \  } \{4, 5, 6, 7, 8\} \qquad \mathrm{(D) \  } \{5, 6, 7, 8, 9\} \qquad \mathrm{(E) \  }\{4, 5, 6, 7, 8, 9\} </math>
  
 +
[[1985 AHSME Problems/Problem 24|Solution]]
 
==Problem 25==
 
==Problem 25==
 
The [[volume]] of a certain rectangular solid is <math> 8 \text{cm}^3 </math>, its total [[surface area]] is <math> 32 \text{cm}^2 </math>, and its three dimensions are in [[geometric progression]]. The sums of the lengths in cm of all the edges of this solid is
 
The [[volume]] of a certain rectangular solid is <math> 8 \text{cm}^3 </math>, its total [[surface area]] is <math> 32 \text{cm}^2 </math>, and its three dimensions are in [[geometric progression]]. The sums of the lengths in cm of all the edges of this solid is
Line 217: Line 241:
 
<math> \mathrm{(A)\ } 28 \qquad \mathrm{(B) \ }32 \qquad \mathrm{(C) \  } 36 \qquad \mathrm{(D) \  } 40 \qquad \mathrm{(E) \  }44 </math>
 
<math> \mathrm{(A)\ } 28 \qquad \mathrm{(B) \ }32 \qquad \mathrm{(C) \  } 36 \qquad \mathrm{(D) \  } 40 \qquad \mathrm{(E) \  }44 </math>
  
 +
[[1985 AHSME Problems/Problem 25|Solution]]
 
==Problem 26==
 
==Problem 26==
 
Find the least [[positive integer]] <math> n </math> for which <math> \frac{n-13}{5n+6} </math> is a non-zero reducible fraction.
 
Find the least [[positive integer]] <math> n </math> for which <math> \frac{n-13}{5n+6} </math> is a non-zero reducible fraction.
Line 222: Line 247:
 
<math> \mathrm{(A)\ } 45 \qquad \mathrm{(B) \ }68 \qquad \mathrm{(C) \  } 155 \qquad \mathrm{(D) \  } 226 \qquad \mathrm{(E) \  }\text{none of these} </math>
 
<math> \mathrm{(A)\ } 45 \qquad \mathrm{(B) \ }68 \qquad \mathrm{(C) \  } 155 \qquad \mathrm{(D) \  } 226 \qquad \mathrm{(E) \  }\text{none of these} </math>
  
 +
[[1985 AHSME Problems/Problem 26|Solution]]
 
==Problem 27==
 
==Problem 27==
 
Consider a sequence <math> x_1, x_2, x_3, \cdots </math> defined by
 
Consider a sequence <math> x_1, x_2, x_3, \cdots </math> defined by
Line 237: Line 263:
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 9 \qquad \mathrm{(E) \  }27 </math>
 
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 9 \qquad \mathrm{(E) \  }27 </math>
  
 +
[[1985 AHSME Problems/Problem 27|Solution]]
 
==Problem 28==
 
==Problem 28==
 
In <math> \triangle ABC </math>, we have <math> \angle C=3\angle A, a=27, </math> and <math> c=48 </math>. What is <math> b </math>?
 
In <math> \triangle ABC </math>, we have <math> \angle C=3\angle A, a=27, </math> and <math> c=48 </math>. What is <math> b </math>?
Line 253: Line 280:
 
<math> \mathrm{(A)\ } 33 \qquad \mathrm{(B) \ }35 \qquad \mathrm{(C) \  } 37 \qquad \mathrm{(D) \  } 39 \qquad \mathrm{(E) \  }\text{not uniquely determined} </math>
 
<math> \mathrm{(A)\ } 33 \qquad \mathrm{(B) \ }35 \qquad \mathrm{(C) \  } 37 \qquad \mathrm{(D) \  } 39 \qquad \mathrm{(E) \  }\text{not uniquely determined} </math>
  
 +
[[1985 AHSME Problems/Problem 28|Solution]]
 
==Problem 29==
 
==Problem 29==
 
In their base <math> 10 </math> representation, the integer <math> a </math> consists of a sequence of <math> 1985 </math> eights and the integer <math> b </math>consists of a sequence of <math> 1985 </math> fives. What is the sum of the digits of the base <math> 10 </math> representation of <math> 9ab </math>?
 
In their base <math> 10 </math> representation, the integer <math> a </math> consists of a sequence of <math> 1985 </math> eights and the integer <math> b </math>consists of a sequence of <math> 1985 </math> fives. What is the sum of the digits of the base <math> 10 </math> representation of <math> 9ab </math>?
Line 258: Line 286:
 
<math> \mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \  } 17865 \qquad \mathrm{(D) \  } 17874 \qquad \mathrm{(E) \  }19851 </math>
 
<math> \mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \  } 17865 \qquad \mathrm{(D) \  } 17874 \qquad \mathrm{(E) \  }19851 </math>
  
 +
[[1985 AHSME Problems/Problem 29|Solution]]
 
==Problem 30==
 
==Problem 30==
 
Let <math> \lfloor x \rfloor </math> be the greatest integer less than or equal to <math> x </math>. Then the number of real solutions to <math> 4x^2-40\lfloor x \rfloor -51=0 </math> is
 
Let <math> \lfloor x \rfloor </math> be the greatest integer less than or equal to <math> x </math>. Then the number of real solutions to <math> 4x^2-40\lfloor x \rfloor -51=0 </math> is
Line 263: Line 292:
 
<math> \mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \  } 2 \qquad \mathrm{(D) \  } 3 \qquad \mathrm{(E) \  }4 </math>
 
<math> \mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \  } 2 \qquad \mathrm{(D) \  } 3 \qquad \mathrm{(E) \  }4 </math>
  
 +
[[1985 AHSME Problems/Problem 30|Solution]]
 
==See Also==
 
==See Also==
 
*[[AHSME]]
 
*[[AHSME]]
 
*[[1985 AHSME]]
 
*[[1985 AHSME]]

Revision as of 20:10, 7 October 2011

Problem 1

If $2x+1=8$, then $4x+1=$

$\mathrm{(A)\ } 15 \qquad \mathrm{(B) \ }16 \qquad \mathrm{(C) \  } 17 \qquad \mathrm{(D) \  } 18 \qquad \mathrm{(E) \  }19$

Solution

Problem 2

In an arcade game, the "monster" is the shaded sector of a circle of radius $1$ cm, as shown in the figure. The missing piece (the mouth) has central angle $60^\circ$. What is the perimeter of the monster in cm?

[asy] size(100); defaultpen(linewidth(0.7)); filldraw(Arc(origin,1,30,330)--dir(330)--origin--dir(30)--cycle, yellow, black); label("1", (sqrt(3)/4, 1/4), NW); label("$60^\circ$", (1,0));[/asy]

$\mathrm{(A)\ } \pi+2 \qquad \mathrm{(B) \ }2\pi \qquad \mathrm{(C) \  } \frac{5}{3}\pi \qquad \mathrm{(D) \  } \frac{5}{6}\pi+2 \qquad \mathrm{(E) \  }\frac{5}{3}\pi+2$

Solution

Problem 3

In right $\triangle ABC$ with legs $5$ and $12$, arcs of circles are drawn, one with center $A$ and radius $12$, the other with center $B$ and radius $5$. They intersect the hypotenuse at $M$ and $N$. Then, $MN$ has length:

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); real r=degrees(B); draw(A--B--C--cycle^^Arc(A,12,0,r)^^Arc(B,B.y,180+r,270)); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(point--N)); label("$12$", (6,0), S); label("$5$", (12,3.5), E);[/asy]

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }\frac{13}{5} \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }\frac{24}{5}$

Solution

Problem 4

A large bag of coins contains pennies, dimes, and quarters. There are twice as many dimes as pennies and three times as many quarters as dimes. An amount of money which could be in the bag is

$\mathrm{(A)\ }$$$306 \qquad \mathrm{(B) \ }$$$333 \qquad \mathrm{(C)\ }$$$342 \qquad \mathrm{(D) \  }$$$348 \qquad \mathrm{(E) \  }$$$360$

Solution

Problem 5

Which terms must be removed from the sum

$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}$

if the sum of the remaining terms is equal to $1$?

$\mathrm{(A)\ } \frac{1}{4}\text{ and }\frac{1}{8} \qquad \mathrm{(B) \ }\frac{1}{4}\text{ and }\frac{1}{12} \qquad \mathrm{(C) \  } \frac{1}{8}\text{ and }\frac{1}{12} \qquad \mathrm{(D) \  } \frac{1}{6}\text{ and }\frac{1}{10} \qquad \mathrm{(E) \  }\frac{1}{8}\text{ and }\frac{1}{10}$

Solution

Problem 6

One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is $\frac{2}{3}$ of the probability that a girl is chosen. The ratio of the number of boys to the total number of boys and girls is

$\mathrm{(A)\ } \frac{1}{3} \qquad \mathrm{(B) \ }\frac{2}{5} \qquad \mathrm{(C) \  } \frac{1}{2} \qquad \mathrm{(D) \  } \frac{3}{5} \qquad \mathrm{(E) \  }\frac{2}{3}$

Solution

Problem 7

In some computer languages (such as APL), when there are no parentheses in an algebraic expression, the operations are grouped from left to right. Thus, $a\times b-c$ in such languages means the same as $a(b-c)$ in ordinary algebraic notation. If $a\div b-c+d$ is evaluated in such a language, the result in ordinary algebraic notation would be

$\mathrm{(A)\ } \frac{a}{b}-c+d \qquad \mathrm{(B) \ }\frac{a}{b}-c-d \qquad \mathrm{(C) \  } \frac{d+c-b}{a} \qquad \mathrm{(D) \  } \frac{a}{b-c+d} \qquad \mathrm{(E) \  }\frac{a}{b-c-d}$

Solution

Problem 8

Let $a, a', b,$ and $b'$ be real numbers with $a$ and $a'$ nonzero. The solution to $ax+b$ is less than the solution to $a'x+b'=0$ if and only if

$\mathrm{(A)\ } a'b<ab' \qquad \mathrm{(B) \ }ab'<a'b \qquad \mathrm{(C) \  } ab<a'b' \qquad \mathrm{(D) \  } \frac{b}{a}<\frac{b'}{a'} \qquad$

$\mathrm{(E) \  }\frac{b'}{a'}<\frac{b}{a}$

Solution

Problem 9

The odd positive integers $1, 3, 5, 6, \cdots$, are arranged into five columns continuing with the pattern shown on the right. Counting from the left, the column in which $1985$ appears in is the

[asy] int i,j; for(i=0; i<4; i=i+1) { label(string(16*i+1), (2*1,-2*i)); label(string(16*i+3), (2*2,-2*i)); label(string(16*i+5), (2*3,-2*i)); label(string(16*i+7), (2*4,-2*i)); } for(i=0; i<3; i=i+1) { for(j=0; j<4; j=j+1) { label(string(16*i+15-2*j), (2*j,-2*i-1)); }} dot((0,-7)^^(0,-9)^^(2*4,-8)^^(2*4,-10)); for(i=-10; i<-6; i=i+1) { for(j=1; j<4; j=j+1) { dot((2*j,i)); }}[/asy]

$\mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \  } \text{third} \qquad \mathrm{(D) \  } \text{fourth} \qquad \mathrm{(E) \  }\text{fifth}$

Solution

Problem 10

An arbitrary circle can intersect the graph $y=\sin x$ in

$\mathrm{(A)  } \text{at most }2\text{ points} \qquad \mathrm{(B)  }\text{at most }4\text{ points} \qquad \mathrm{(C)   } \text{at most }6\text{ points} \qquad \mathrm{(D)  } \text{at most }8\text{ points}\qquad \mathrm{(E)   }\text{more than }16\text{ points}$

Solution

Problem 11

How many distinguishable rearrangements of the letters in CONTEST have both the vowels first? (For instance, OETCNST is one such arrangement but OTETSNC is not.)

$\mathrm{(A)\ } 60 \qquad \mathrm{(B) \ }120 \qquad \mathrm{(C) \  } 240 \qquad \mathrm{(D) \  } 720 \qquad \mathrm{(E) \  }2520$

Solution

Problem 12

Let's write $p, q,$ and $r$ as three distinct prime numbers, where $1$ is not a prime. Which of the following is the smallest positive perfect cube leaving $n=pq^2r^4$ as a divisor?

$\mathrm{(A)\ } p^8q^8r^8 \qquad \mathrm{(B) \ }(pq^2r^2)^3 \qquad \mathrm{(C) \  } (p^2q^2r^2)^3 \qquad \mathrm{(D) \  } (pqr^2)^3 \qquad \mathrm{(E) \  }4p^3q^3r^3$

Solution

Problem 13

Pegs are put in a board $1$ unit apart both horizontally and vertically. A rubber band is stretched over $4$ pegs as shown in the figure, forming a quadrilateral. Its area in square units is

[asy] int i,j; for(i=0; i<5; i=i+1) { for(j=0; j<4; j=j+1) { dot((i,j)); }} draw((0,1)--(1,3)--(4,1)--(3,0)--cycle, linewidth(0.7));[/asy]

$\mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }4.5 \qquad \mathrm{(C) \  } 5 \qquad \mathrm{(D) \  } 5.5 \qquad \mathrm{(E) \  }6$

Solution

Problem 14

Exactly three of the interior angles of a convex polygon are obtuse. What is the maximum number of sides of such a polygon?

$\mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }5 \qquad \mathrm{(C) \  } 6 \qquad \mathrm{(D) \  } 7 \qquad \mathrm{(E) \  }8$

Solution

Problem 15

If $a$ and $b$ are positive numbers such that $a^b=b^a$ and $b=9a$, then the value of $a$ is:

$\mathrm{(A)\ } 9 \qquad \mathrm{(B) \ }\frac{1}{9} \qquad \mathrm{(C) \  } \sqrt[9]{9} \qquad \mathrm{(D) \  } \sqrt[3]{9} \qquad \mathrm{(E) \  }\sqrt[4]{3}$

Solution

Problem 16

If $A=20^\circ$ and $B=25^\circ$, then the value of $(1+\tan A)(1+\tan B)$ is

$\mathrm{(A)\ } \sqrt{3} \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 1+\sqrt{2} \qquad \mathrm{(D) \  } 2(\tan A+\tan B) \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 17

Diagonal $DB$ of rectangle $ABCD$ is divided into $3$ segments of length $1$ by parallel lines $L$ and $L'$ that pass through $A$ and $C$ and are perpendicular to $DB$. The area of $ABCD$, rounded to the nearest tenth, is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); real x=sqrt(6), y=sqrt(3), a=0.4; pair D=origin, A=(0,y), B=(x,y), C=(x,0), E=foot(C,B,D), F=foot(A,B,D); real r=degrees(B); pair M1=F+3*dir(r)*dir(90), M2=F+3*dir(r)*dir(-90), N1=E+3*dir(r)*dir(90), N2=E+3*dir(r)*dir(-90); markscalefactor=0.02; draw(B--C--D--A--B--D^^M1--M2^^N1--N2^^rightanglemark(A,F,B)^^rightanglemark(N1,E,B)); pair W=A+a*dir(135), X=B+a*dir(45), Y=C+a*dir(-45), Z=D+a*dir(-135); label("A", A, NE); label("B", B, NE); label("C", C, dir(0)); label("D", D, dir(180)); label("$L$", (x/2,0), SW); label("$L^\prime$", C, SW); label("1", D--F, NW); label("1", F--E, SE); label("1", E--B, SE); clip(W--X--Y--Z--cycle);[/asy]

$\mathrm{(A)\ } 4.1 \qquad \mathrm{(B) \ }4.2 \qquad \mathrm{(C) \  } 4.3 \qquad \mathrm{(D) \  } 4.4 \qquad \mathrm{(E) \  }4.5$

Solution

Problem 18

Six bags of marbles contain $18, 19, 21, 23, 25,$ and $34$ marbles, respectively. One bag contains chipped marbles only. The other $5$ bags contain no chipped marbles. Jane takes three of the bags and George takes two of the others. Only the bag of chipped marbles remains. If jane gets twice as many marbles as George, how many chipped marbles are there?

$\mathrm{(A)\ } 18 \qquad \mathrm{(B) \ }19 \qquad \mathrm{(C) \  } 21 \qquad \mathrm{(D) \  } 23 \qquad \mathrm{(E) \  }25$

Solution

Problem 19

Consider the graphs $y=Ax^2$ and $y^2+3=x^2+4y$, where $A$ is a positive constant and $x$ and $y$ are real variables. In how many points do the two graphs intersect?

$\mathrm{(A) \ }\text{exactly }4 \qquad \mathrm{(B) \ }\text{exactly }2 \qquad$

$\mathrm{(C) \  }\text{at least }1,\text{ but the number varies for different positive values of }A \qquad$

$\mathrm{(D) \  }0\text{ for at least one positive value of }A \qquad \mathrm{(E) \ }\text{none of these}$

Solution

Problem 20

A wooden cube with edge length $n$ units (where $n$ is an integer $>2$) is painted black all over. By slices parallel to its faces, the cube is cut into $n^3$ smaller cubes each of unit length. If the number of smaller cubes with just one face painted black is equal to the number of smaller cubes completely free of paint, what is $n$?

$\mathrm{(A)\ } 5 \qquad \mathrm{(B) \ }6 \qquad \mathrm{(C) \  } 7 \qquad \mathrm{(D) \  } 8 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 21

How many integers $x$ satisfy the equation $(x^2-x-1)^{x+2}=1$

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 22

In a circle with center $O$, $AD$ is a diameter, $ABC$ is a chord, $BO=5$, and $\angle ABO=\stackrel{\frown}{CD}=60^\circ$. Then the length of $BC$ is:

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair O=origin, A=dir(35), C=dir(155), D=dir(215), B=intersectionpoint(dir(125)--O, A--C); draw(C--A--D^^B--O^^Circle(O,1)); pair point=O; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$O$", O, dir(305)); label("$5$", B--O, dir(O--B)*dir(90)); label("$60^\circ$", dir(185), dir(185)); label("$60^\circ$", B+0.05*dir(-25), dir(-25));[/asy]

$\mathrm{(A)\ } 3 \qquad \mathrm{(B) \ }3+\sqrt{3} \qquad \mathrm{(C) \  } 5-\frac{\sqrt{3}}{2} \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of the above}$

Solution

Problem 23

If $x=\frac{-1+i\sqrt{3}}{2}$ and $y=\frac{-1-i\sqrt{3}}{2}$, where $i^2=-1$, then which of the following is not correct?

$\mathrm{(A)\ } x^5+y^5=-1 \qquad \mathrm{(B) \ }x^7+y^7=-1 \qquad \mathrm{(C) \  } x^9+y^9=-1 \qquad$

$\mathrm{(D) \  } x^{11}+y^{11}=-1 \qquad \mathrm{(E) \  }x^{13}+y^{13}=-1$

Solution

Problem 24

A non-zero digit is chosen in such a way that the probability of choosing digit $d$ is $\log_{10}{(d+1)}-\log_{10}{d}$. The probability that the digit $2$ is chosen is exactly $\frac{1}{2}$ the probability that the digit is chosen in the set

$\mathrm{(A)\ } \{2, 3\} \qquad \mathrm{(B) \ }\{3, 4\} \qquad \mathrm{(C) \  } \{4, 5, 6, 7, 8\} \qquad \mathrm{(D) \  } \{5, 6, 7, 8, 9\} \qquad \mathrm{(E) \  }\{4, 5, 6, 7, 8, 9\}$

Solution

Problem 25

The volume of a certain rectangular solid is $8 \text{cm}^3$, its total surface area is $32 \text{cm}^2$, and its three dimensions are in geometric progression. The sums of the lengths in cm of all the edges of this solid is

$\mathrm{(A)\ } 28 \qquad \mathrm{(B) \ }32 \qquad \mathrm{(C) \  } 36 \qquad \mathrm{(D) \  } 40 \qquad \mathrm{(E) \  }44$

Solution

Problem 26

Find the least positive integer $n$ for which $\frac{n-13}{5n+6}$ is a non-zero reducible fraction.

$\mathrm{(A)\ } 45 \qquad \mathrm{(B) \ }68 \qquad \mathrm{(C) \  } 155 \qquad \mathrm{(D) \  } 226 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 27

Consider a sequence $x_1, x_2, x_3, \cdots$ defined by

$x_1=\sqrt[3]{3}$

$x_2=\sqrt[3]{3}^\sqrt[3]{3}$ (Error compiling LaTeX. Unknown error_msg)

and in general

$x_n=(x_{n-1})^\sqrt[3]{3}$ (Error compiling LaTeX. Unknown error_msg) for $n>1$.

What is the smallest value of $n$ for which $x_n$ is an integer?

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 9 \qquad \mathrm{(E) \  }27$

Solution

Problem 28

In $\triangle ABC$, we have $\angle C=3\angle A, a=27,$ and $c=48$. What is $b$?

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(14,0), C=(10,6); draw(A--B--C--cycle); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$a$", B--C, dir(B--C)*dir(-90)); label("$b$", A--C, dir(C--A)*dir(-90)); label("$c$", A--B, dir(A--B)*dir(-90));[/asy]

$\mathrm{(A)\ } 33 \qquad \mathrm{(B) \ }35 \qquad \mathrm{(C) \  } 37 \qquad \mathrm{(D) \  } 39 \qquad \mathrm{(E) \  }\text{not uniquely determined}$

Solution

Problem 29

In their base $10$ representation, the integer $a$ consists of a sequence of $1985$ eights and the integer $b$consists of a sequence of $1985$ fives. What is the sum of the digits of the base $10$ representation of $9ab$?

$\mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \  } 17865 \qquad \mathrm{(D) \  } 17874 \qquad \mathrm{(E) \  }19851$

Solution

Problem 30

Let $\lfloor x \rfloor$ be the greatest integer less than or equal to $x$. Then the number of real solutions to $4x^2-40\lfloor x \rfloor -51=0$ is

$\mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \  } 2 \qquad \mathrm{(D) \  } 3 \qquad \mathrm{(E) \  }4$

Solution

See Also