Difference between revisions of "1985 AIME Problems"

m (Problem 5: added)
m (Problem 6: added)
Line 23: Line 23:
  
 
==Problem 6==
 
==Problem 6==
 +
As shown in the figure, triangle <math>ABC</math> is divided into six smaller triangles by lines drawn from the  vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle <math>ABC</math>.
  
 +
{{image}}
  
 
[[1985 AIME Problems/Problem 6 | Solution]]
 
[[1985 AIME Problems/Problem 6 | Solution]]
 +
 
==Problem 7==
 
==Problem 7==
  

Revision as of 09:24, 3 December 2006

Problem 1

Let $x_1=97$, and for $n>1$ let$x_n=\frac{n}{x_{n-1}}$. Calculate the product $x_1x_2x_3x_4x_5x_6x_7x_8$.

Solution

Problem 2

When a right triangle is rotated about one leg, the volume of the cone produced is $800\pi \;\textrm{cm}^3$. When the triangle is rotated about the other leg, the volume of the cone produced is $1920\pi \;\textrm{cm}^3$. What is the length (in cm) of the hypotenuse of the triangle?

Solution

Problem 3

Find $c$ if $a$, $b$, and $c$ are positive integers which satisfy $c=(a + bi)^3 - 107i$, where $i^2 = -1$.

Solution

Problem 4

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly $\frac1{1985}$.

Solution

Problem 5

A sequence of integers $a_1, a_2, a_3, \ldots$ is chosen so that $a_n = a_{n - 1} - a_{n - 2}$ for each $n \ge 3$. What is the sum of the first 2001 terms of this sequence if the sum of the first 1492 terms is 1985, and the sum of the first 1985 terms is 1492?

Solution

Problem 6

As shown in the figure, triangle $ABC$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle $ABC$.


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also

Invalid username
Login to AoPS