Difference between revisions of "1985 AIME Problems/Problem 9"

(Add solution 2 using Law of Cosines directly)
m (Solution 2 (Law of Cosines))
 
(One intermediate revision by one other user not shown)
Line 67: Line 67:
 
<cmath>2^2 = 3^2 + 4^2 - 2\cdot3\cdot4\cos\frac{\alpha}{2}</cmath>  
 
<cmath>2^2 = 3^2 + 4^2 - 2\cdot3\cdot4\cos\frac{\alpha}{2}</cmath>  
 
Which, rearranges to:  
 
Which, rearranges to:  
<cmath>21 = 24cos\frac{\alpha}{2}</cmath>  
+
<cmath>21 = 24\cos\frac{\alpha}{2}</cmath>  
 
And, that gets us:  
 
And, that gets us:  
<cmath>cos\frac{\alpha}{2} = 7/8</cmath>  
+
<cmath>\cos\frac{\alpha}{2} = 7/8</cmath>  
 
Using <math>\cos 2\theta = 2\cos^2 \theta - 1</math>, we get that:  
 
Using <math>\cos 2\theta = 2\cos^2 \theta - 1</math>, we get that:  
 
<cmath>\cos\alpha = 17/32</cmath>   
 
<cmath>\cos\alpha = 17/32</cmath>   
Line 75: Line 75:
  
  
-Alexlikemath
+
- AlexLikeMath
 
 
  
 
==Solution 3 (trig)==  
 
==Solution 3 (trig)==  

Latest revision as of 16:20, 28 September 2019

Problem

In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?

Solution 1

[asy] size(200);  pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3); D(CR(O,r)); D(O--rotate(a/2)*A--rotate(-a/2)*A--cycle); D(O--rotate(b/2)*A--rotate(-b/2)*A--cycle); D(O--rotate((a+b)/2)*A--rotate(-(a+b)/2)*A--cycle); MP("2",(rotate(a/2)*A+rotate(-a/2)*A)/2,NE); MP("3",(rotate(b/2)*A+rotate(-b/2)*A)/2,NE); MP("4",(rotate((a+b)/2)*A+rotate(-(a+b)/2)*A)/2,NE); D(anglemark(rotate(-(a+b)/2)*A,O,rotate((a+b)/2)*A,5)); label("\(\alpha+\beta\)",(0.08,0.08),NE,fontsize(8)); [/asy]

All chords of a given length in a given circle subtend the same arc and therefore the same central angle. Thus, by the given, we can re-arrange our chords into a triangle with the circle as its circumcircle.

[asy] size(200);  pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3), A1 = rotate(a/2)*A, A2 = rotate(-a/2)*A, A3 = rotate(-a/2-b)*A; D(CR(O,r)); D(O--A1--A2--cycle); D(O--A2--A3--cycle); D(O--A1--A3--cycle); MP("2",(A1+A2)/2,NE); MP("3",(A2+A3)/2,E); MP("4",(A1+A3)/2,E); D(anglemark(A2,O,A1,5)); D(anglemark(A3,O,A2,5)); label("\(\alpha\)",(0.07,0.16),NE,fontsize(8)); label("\(\beta\)",(0.12,-0.16),NE,fontsize(8)); [/asy]

This triangle has semiperimeter $\frac{2 + 3 + 4}{2}$ so by Heron's formula it has area $K = \sqrt{\frac92 \cdot \frac52 \cdot \frac32 \cdot \frac12} = \frac{3}{4}\sqrt{15}$. The area of a given triangle with sides of length $a, b, c$ and circumradius of length $R$ is also given by the formula $K = \frac{abc}{4R}$, so $\frac6R = \frac{3}{4}\sqrt{15}$ and $R = \frac8{\sqrt{15}}$.

Now, consider the triangle formed by two radii and the chord of length 2. This isosceles triangle has vertex angle $\alpha$, so by the Law of Cosines,

\[2^2 = R^2 + R^2 - 2R^2\cos \alpha \Longrightarrow \cos \alpha = \frac{2R^2 - 4}{2R^2} = \frac{17}{32}\] and the answer is $17 + 32 = \boxed{049}$.


Solution 2 (Law of Cosines)

[asy] size(200);  pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3), A1 = rotate(a/2)*A, A2 = rotate(-a/2)*A, A3 = rotate(-a/2-b)*A; D(CR(O,r)); D(O--A1--A2--cycle); D(O--A2--A3--cycle); D(O--A1--A3--cycle); MP("2",(A1+A2)/2,NE); MP("3",(A2+A3)/2,E); MP("4",(A1+A3)/2,E); D(anglemark(A2,O,A1,5)); D(anglemark(A3,O,A2,5)); D(anglemark(A2,A3,A1,18)); label("\(\alpha\)",(0.07,0.16),NE,fontsize(8)); label("\(\beta\)",(0.12,-0.16),NE,fontsize(8)); label("\(\alpha\)/2",(0.82,-1.25),NE,fontsize(8)); [/asy]

It’s easy to see in triangle which lengths 2, 3, and 4, that the angle opposite the side 2 is $\frac{\alpha}{2}$, and using the Law of Cosines, we get: \[2^2 = 3^2 + 4^2 - 2\cdot3\cdot4\cos\frac{\alpha}{2}\] Which, rearranges to: \[21 = 24\cos\frac{\alpha}{2}\] And, that gets us: \[\cos\frac{\alpha}{2} = 7/8\] Using $\cos 2\theta = 2\cos^2 \theta - 1$, we get that: \[\cos\alpha = 17/32\] Which gives an answer of $\boxed{049}$


- AlexLikeMath

Solution 3 (trig)

Using the first diagram above, \[\sin \frac{\alpha}{2} = \frac{1}{r}\] \[\sin \frac{\beta}{2} = \frac{1.5}{r}\] \[\sin(\frac{\alpha}{2}+\frac{\beta}{2})=\frac{2}{r}\] by the Pythagorean trig identities, \[\cos\frac{\alpha}{2}=\sqrt{1-\frac{1}{r^2}}\] \[\cos\frac{\beta}{2}=\sqrt{1-\frac{2.25}{r^2}}\] so by the composite sine identity \[\frac{2}{r}=\frac{1}{r}\sqrt{1-\frac{2.25}{r^2}}+\frac{1.5}{r}\sqrt{1-\frac{1}{r^2}}\] multiply both sides by $2r$, then subtract $\sqrt{4-\frac{9}{r^2}}$ from both sides squaring both sides, we get \[16 - 8\sqrt{4-\frac{9}{r^2}} + 4 - \frac{9}{r^2}=9 - \frac{9}{r^2}\] \[\Longrightarrow 16+4=9+8\sqrt{4-\frac{9}{r^2}}\Longrightarrow\frac{11}{8}=\sqrt{4-\frac{9}{r^2}}\Longrightarrow\frac{121}{64}=4-\frac{9}{r^2}\] \[\Longrightarrow\frac{(256-121)r^2}{64}=9\Longrightarrow r^2= \frac{64}{15}\] plugging this back in, \[\cos^2(\frac{\alpha}{2})=1-\frac{15}{64}=\frac{49}{64}\] so \[\cos(\alpha)=2(\frac{49}{64})-1=\frac{34}{64}=\frac{17}{32}\] and the answer is $17+32=\boxed{049}$

See also

1985 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions