1985 AJHSME Problems/Problem 5

Revision as of 16:02, 3 July 2013 by MSTang (talk | contribs) (See Also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


[asy] unitsize(13); draw((0,0)--(20,0)); draw((0,0)--(0,15)); draw((0,3)--(-1,3)); draw((0,6)--(-1,6)); draw((0,9)--(-1,9)); draw((0,12)--(-1,12)); draw((0,15)--(-1,15)); fill((2,0)--(2,15)--(3,15)--(3,0)--cycle,black); fill((4,0)--(4,12)--(5,12)--(5,0)--cycle,black); fill((6,0)--(6,9)--(7,9)--(7,0)--cycle,black); fill((8,0)--(8,9)--(9,9)--(9,0)--cycle,black); fill((10,0)--(10,15)--(11,15)--(11,0)--cycle,black); label("A",(2.5,-.5),S); label("B",(4.5,-.5),S); label("C",(6.5,-.5),S); label("D",(8.5,-.5),S); label("F",(10.5,-.5),S); label("Grade",(15,-.5),S); label("$1$",(-1,3),W); label("$2$",(-1,6),W); label("$3$",(-1,9),W); label("$4$",(-1,12),W); label("$5$",(-1,15),W); [/asy]

The bar graph shows the grades in a mathematics class for the last grading period. If A, B, C, and D are satisfactory grades, what fraction of the grades shown in the graph are satisfactory?

$\text{(A)}\ \frac{1}{2} \qquad \text{(B)}\ \frac{2}{3} \qquad \text{(C)}\ \frac{3}{4} \qquad \text{(D)}\ \frac{4}{5} \qquad \text{(E)}\ \frac{9}{10}$


To get the fraction, we need to find the number of people who got grades that are "satisfactory" over the total number of people.

Finding the number of people who got acceptable grades is pretty easy. 5 people got A's, 4 people got B's, 3 people got C's and 3 people got D's. Adding this up, we just have $5+4+3+3 = 15$.

So we know the top of the fraction is 15. Only 5 people got "unacceptable" scores, so there are $15 + 5 = 20$ scores.

$\frac{15}{20}=\frac{3}{4}$ is our fraction, so $\boxed{\text{C}}$ is the answer.

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS