Difference between revisions of "1986 AHSME Problems"

(Created page with "== Problem 1 == <math>[x-(y-x)] - [(x-y) - x] =</math> <math>\textbf{(A)}\ 2y \qquad \textbf{(B)}\ 2x \qquad \textbf{(C)}\ -2y \qquad \textbf{(D)}\ -2x \qquad \textbf{(E)}\ 0 </...")
 
m
Line 65: Line 65:
 
Solve <math>t</math> in this system of equation:
 
Solve <math>t</math> in this system of equation:
  
<cmath>t-w+l = 32//
+
<cmath>t-w+l = 32\quad \\
 
t-l+w = 28</cmath>
 
t-l+w = 28</cmath>
  
Line 174: Line 174:
 
\textbf{(B)}\ -6\qquad
 
\textbf{(B)}\ -6\qquad
 
\textbf{(C)}\ 0\qquad
 
\textbf{(C)}\ 0\qquad
textbf{(D)}\ 6\qquad
+
\textbf{(D)}\ 6\qquad
 
\textbf{(E)}\ 12    </math>
 
\textbf{(E)}\ 12    </math>
 
    
 
    
Line 197: Line 197:
 
and then computing the average of the result and <math>z</math>. Whenever <math>x < y < z</math>, the student's final result is
 
and then computing the average of the result and <math>z</math>. Whenever <math>x < y < z</math>, the student's final result is
  
<math>\textbf{(A)}\ \text{correct}
+
<math>\textbf{(A)}\ \text{correct}\quad
\textbf{(B)}\ \text{always less than A}
+
\textbf{(B)}\ \text{always less than A}\quad
\textbf{(C)}\ \text{always greater than A}
+
\textbf{(C)}\ \text{always greater than A}\quad\\
\textbf{(D)}\ \text{sometimes less than A and sometimes equal to A}
+
\textbf{(D)}\ \text{sometimes less than A and sometimes equal to A}\quad\\
\textbf{(E)}\ \text{sometimes greater than A and sometimes equal to A}     </math>
+
\textbf{(E)}\ \text{sometimes greater than A and sometimes equal to A} \quad  </math>
 
    
 
    
 
[[1986 AHSME Problems/Problem 15|Solution]]
 
[[1986 AHSME Problems/Problem 15|Solution]]
Line 441: Line 441:
 
If the length of the third altitude is also an integer, what is the biggest it can be?
 
If the length of the third altitude is also an integer, what is the biggest it can be?
  
\textbf{(A)}\ 4\qquad
+
<math>\textbf{(A)}\ 4\qquad
 
\textbf{(B)}\ 5\qquad
 
\textbf{(B)}\ 5\qquad
 
\textbf{(C)}\ 6\qquad
 
\textbf{(C)}\ 6\qquad
 
\textbf{(D)}\ 7\qquad
 
\textbf{(D)}\ 7\qquad
\textbf{(E)}\ \text{none of these}    
+
\textbf{(E)}\ \text{none of these}   </math> 
 
    
 
    
 
[[1986 AHSME Problems/Problem 29|Solution]]
 
[[1986 AHSME Problems/Problem 29|Solution]]

Revision as of 06:04, 3 October 2014

Problem 1

$[x-(y-x)] - [(x-y) - x] =$

$\textbf{(A)}\ 2y \qquad \textbf{(B)}\ 2x \qquad \textbf{(C)}\ -2y \qquad \textbf{(D)}\ -2x \qquad \textbf{(E)}\ 0$

Solution

Problem 2

If the line $L$ in the $xy$-plane has half the slope and twice the $y$-intercept of the line $y = \frac{2}{3} x + 4$, then an equation for $L$ is:

$\textbf{(A)}\ y = \frac{1}{3} x + 8 \qquad \textbf{(B)}\ y = \frac{4}{3} x + 2 \qquad \textbf{(C)}\ y =\frac{1}{3}x+4\qquad\\  \textbf{(D)}\ y =\frac{4}{3}x+4\qquad \textbf{(E)}\ y =\frac{1}{3}x+2$

Solution

Problem 3

$\triangle ABC$ is a right angle at $C$ and $\angle A = 20^\circ$. If $BD$ ($D$ in $\overline{AC}$) is the bisector of $\angle ABC$, then $\angle BDC =$

$\textbf{(A)}\ 40^\circ \qquad \textbf{(B)}\ 45^\circ \qquad \textbf{(C)}\ 50^\circ \qquad \textbf{(D)}\ 55^\circ\qquad \textbf{(E)}\ 60^\circ$

Solution

Problem 4

Let S be the statement "If the sum of the digits of the whole number $n$ is divisible by $6$, then $n$ is divisible by $6$."

A value of $n$ which shows $S$ to be false is

$\textbf{(A)}\ 30 \qquad \textbf{(B)}\ 33 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 42 \qquad \textbf{(E)}\ \text{ none of these}$

Solution

Problem 5

Simplify $\left(\sqrt[6]{27} - \sqrt{6 \frac{3}{4} }\right)^2$

$\textbf{(A)}\ \frac{3}{4} \qquad \textbf{(B)}\ \frac{\sqrt 3}{2} \qquad \textbf{(C)}\ \frac{3\sqrt 3}{4}\qquad \textbf{(D)}\ \frac{3}{2}\qquad \textbf{(E)}\ \frac{3\sqrt 3}{2}$

Solution

Problem 6

Solve $t$ in this system of equation:

\[t-w+l = 32\quad \\ t-l+w = 28\]

$\textbf{(A)}\ 28 \qquad \textbf{(B)}\ 29 \qquad \textbf{(C)}\ 30 \qquad \textbf{(D)}\ 31 \qquad \textbf{(E)}\ 32$

Solution

Problem 7

The sum of the greatest integer less than or equal to $x$ and the least integer greater than or equal to $x$ is $5$. The solution set for $x$ is

$\textbf{(A)}\ \Big\{\frac{5}{2}\Big\}\qquad \textbf{(B)}\ \big\{x\ |\ 2 \le x \le 3\big\}\qquad \textbf{(C)}\ \big\{x\ |\ 2\le x < 3\big\}\qquad\\  \textbf{(D)}\ \Big\{x\ |\ 2 < x\le 3\Big\}\qquad \textbf{(E)}\ \Big\{x\ |\ 2 < x < 3\Big\}$

Solution

Problem 8

The population of the United States in $1980$ was $226,504,825$. The area of the country is $3,615,122$ square miles. The are $(5280)^{2}$ square feet in one square mile. Which number below best approximates the average number of square feet per person?

$\textbf{(A)}\ 5,000\qquad \textbf{(B)}\ 10,000\qquad \textbf{(C)}\ 50,000\qquad \textbf{(D)}\ 100,000\qquad \textbf{(E)}\ 500,000$

Solution

Problem 9

The product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\ldots\left(1-\frac{1}{9^{2}}\right)\left(1-\frac{1}{10^{2}}\right)$ equals

$\textbf{(A)}\ \frac{5}{12}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ \frac{11}{20}\qquad \textbf{(D)}\ \frac{2}{3}\qquad \textbf{(E)}\ \frac{7}{10}$

Solution

Problem 10

The $120$ permutations of the $AHSME$ are arranged in dictionary order as if each were an ordinary five-letter word. The last letter of the $85$th word in this list is:

$\textbf{(A)}\ \text{A} \qquad \textbf{(B)}\ \text{H} \qquad \textbf{(C)}\ \text{S} \qquad \textbf{(D)}\ \text{M}\qquad \textbf{(E)}\ \text{E}$

Solution

Problem 11

In $\triangle ABC, AB = 13, BC = 14$ and $CA = 15$. Also, $M$ is the midpoint of side $AB$ and $H$ is the foot of the altitude from $A$ to $BC$. The length of $HM$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair H=origin, A=(0,6), B=(-4,0), C=(5,0), M=B+3.6*dir(B--A); draw(B--C--A--B^^M--H--A^^rightanglemark(A,H,C)); label("A", A, NE); label("B", B, W); label("C", C, E); label("H", H, S); label("M", M, dir(M)); [/asy]

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 6.5\qquad \textbf{(C)}\ 7\qquad \textbf{(D)}\ 7.5\qquad \textbf{(E)}\ 8$

Solution

Problem 12

John scores $93$ on this year's AHSME. Had the old scoring system still been in effect, he would score only $84$ for the same answers. How many questions does he leave unanswered? (In the new scoring system one receives $5$ points for correct answers, $0$ points for wrong answers, and $2$ points for unanswered questions. In the old system, one started with $30$ points, received $4$ more for each correct answer, lost one point for each wrong answer, and neither gained nor lost points for unanswered questions. There are $30$ questions in the $1986$ AHSME.)

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 9\qquad \textbf{(C)}\ 11\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ \text{Not uniquely determined}$

Solution

Problem 13

A parabola $y = ax^{2} + bx + c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, then $abc$ equals

$\textbf{(A)}\ -12\qquad \textbf{(B)}\ -6\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 12$

Solution

Problem 14

Suppose hops, skips and jumps are specific units of length. If $b$ hops equals $c$ skips, $d$ jumps equals $e$ hops, and $f$Vjumps equals $g$ meters, then one meter equals how many skips?

$\textbf{(A)}\ \frac{bdg}{cef}\qquad \textbf{(B)}\ \frac{cdf}{beg}\qquad \textbf{(C)}\ \frac{cdg}{bef}\qquad \textbf{(D)}\ \frac{cef}{bdg}\qquad \textbf{(E)}\ \frac{ceg}{bdf}$

Solution

Problem 15

A student attempted to compute the average $A$ of $x, y$ and $z$ by computing the average of $x$ and $y$, and then computing the average of the result and $z$. Whenever $x < y < z$, the student's final result is

$\textbf{(A)}\ \text{correct}\quad \textbf{(B)}\ \text{always less than A}\quad \textbf{(C)}\ \text{always greater than A}\quad\\ \textbf{(D)}\ \text{sometimes less than A and sometimes equal to A}\quad\\ \textbf{(E)}\ \text{sometimes greater than A and sometimes equal to A}  \quad$

Solution

Problem 16

In $\triangle ABC, AB = 8, BC = 7, CA = 6$ and side $BC$ is extended, as shown in the figure, to a point $P$ so that $\triangle PAB$ is similar to $\triangle PCA$. The length of $PC$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, P=(1.5,5), B=(8,0), C=P+2.5*dir(P--B); draw(A--P--C--A--B--C); label("A", A, W); label("B", B, E); label("C", C, NE); label("P", P, NW); label("6", 3*dir(A--C), SE); label("7", B+3*dir(B--C), NE); label("8", (4,0), S); [/asy]

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution

Problem 17

A drawer in a darkened room contains $100$ red socks, $80$ green socks, $60$ blue socks and $40$ black socks. A youngster selects socks one at a time from the drawer but is unable to see the color of the socks drawn. What is the smallest number of socks that must be selected to guarantee that the selection contains at least $10$ pairs? (A pair of socks is two socks of the same color. No sock may be counted in more than one pair.)

$\textbf{(A)}\ 21\qquad \textbf{(B)}\ 23\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ 30\qquad \textbf{(E)}\ 50$

Solution

Problem 18

A plane intersects a right circular cylinder of radius $1$ forming an ellipse. If the major axis of the ellipse of $50\%$ longer than the minor axis, the length of the major axis is

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ \frac{3}{2}\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ \frac{9}{4}\qquad \textbf{(E)}\ 3$

Solution

Problem 19

A park is in the shape of a regular hexagon $2$ km on a side. Starting at a corner, Alice walks along the perimeter of the park for a distance of $5$ km. How many kilometers is she from her starting point?

$\textbf{(A)}\ \sqrt{13}\qquad \textbf{(B)}\ \sqrt{14}\qquad \textbf{(C)}\ \sqrt{15}\qquad \textbf{(D)}\ \sqrt{16}\qquad \textbf{(E)}\ \sqrt{17}$

Solution

Problem 20

Suppose $x$ and $y$ are inversely proportional and positive. If $x$ increases by $p\%$, then $y$ decreases by

$\textbf{(A)}\ p\%\qquad \textbf{(B)}\ \frac{p}{1+p}\%\qquad \textbf{(C)}\ \frac{100}{p}\%\qquad \textbf{(D)}\ \frac{p}{100+p}\%\qquad \textbf{(E)}\ \frac{100p}{100+p}\%$

Solution

Problem 21

In the configuration below, $\theta$ is measured in radians, $C$ is the center of the circle, $BCD$ and $ACE$ are line segments and $AB$ is tangent to the circle at $A$.

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(0,-1), E=(0,1), C=(0,0), D=dir(10), F=dir(190), B=(-1/sin(10*pi/180))*dir(10); fill(Arc((0,0),1,10,90)--C--D--cycle,mediumgray); fill(Arc((0,0),1,190,270)--B--F--cycle,mediumgray); draw(unitcircle); draw(A--B--D^^A--E); label("$A$",A,S); label("$B$",B,W); label("$C$",C,SE); label("$\theta$",C,SW); label("$D$",D,NE); label("$E$",E,N); [/asy]

A necessary and sufficient condition for the equality of the two shaded areas, given $0 < \theta < \frac{\pi}{2}$, is

$\textbf{(A)}\ \tan \theta = \theta\qquad \textbf{(B)}\ \tan \theta = 2\theta\qquad \textbf{(C)}\ \tan\theta = 4\theta\qquad \textbf{(D)}\ \tan 2\theta =\theta\qquad\\  \textbf{(E)}\ \tan\frac{\theta}{2}=\theta$

Solution

Problem 22

Six distinct integers are picked at random from $\{1,2,3,\ldots,10\}$. What is the probability that, among those selected, the second smallest is $3$?

$\textbf{(A)}\ \frac{1}{60}\qquad \textbf{(B)}\ \frac{1}{6}\qquad \textbf{(C)}\ \frac{1}{3}\qquad \textbf{(D)}\ \frac{1}{2}\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 23

Let N = $69^{5} + 5*69^{4} + 10*69^{3} + 10*69^{2} + 5*69 + 1$. How many positive integers are factors of $N$?

$\textbf{(A)}\ 3\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 69\qquad \textbf{(D)}\ 125\qquad \textbf{(E)}\ 216$

Solution

Problem 24

Let $p(x) = x^{2} + bx + c$, where $b$ and $c$ are integers. If $p(x)$ is a factor of both $x^{4} + 6x^{2} + 25$ and $3x^{4} + 4x^{2} + 28x + 5$, what is $p(1)$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 8$

Solution

Problem 25

If $\lfloor x\rfloor$ is the greatest integer less than or equal to $x$, then $\sum_{N=1}^{1024} \lfloor \log_{2}N\rfloor =$

$\textbf{(A)}\ 8192\qquad \textbf{(B)}\ 8204\qquad \textbf{(C)}\ 9218\qquad \textbf{(D)}\ \lfloor\log_{2}(1024!)\rfloor\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 26

It is desired to construct a right triangle in the coordinate plane so that its legs are parallel to the $x$ and $y$ axes and so that the medians to the midpoints of the legs lie on the lines $y = 3x + 1$ and $y = mx + 2$. The number of different constants $m$ for which such a triangle exists is

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ \text{more than 3}$

Solution

Problem 27

In the adjoining figure, $AB$ is a diameter of the circle, $CD$ is a chord parallel to $AB$, and $AC$ intersects $BD$ at $E$, with $\angle AED = \alpha$. The ratio of the area of $\triangle CDE$ to that of $\triangle ABE$ is

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), E=(0,-.4), C=(.6,-.8), D=(-.6,-.8), E=(0,-.8/(1.6)); draw(unitcircle); draw(A--B--D--C--A); draw(Arc(E,.2,155,205)); label("$A$",A,W); label("$B$",B,C); label("$C$",C,C); label("$D$",D,W); label("$\alpha$",E-(.2,0),W); label("$E$",E,N); [/asy]

$\textbf{(A)}\ \cos\ \alpha\qquad \textbf{(B)}\ \sin\ \alpha\qquad \textbf{(C)}\ \cos^2\alpha\qquad \textbf{(D)}\ \sin^2\alpha\qquad \textbf{(E)}\ 1-\sin\ \alpha$

Solution

Problem 28

$ABCDE$ is a regular pentagon. $AP, AQ$ and $AR$ are the perpendiculars dropped from $A$ onto $CD, CB$ extended and $DE$ extended, respectively. Let $O$ be the center of the pentagon. If $OP = 1$, then $AO + AQ + AR$ equals

[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair O=origin, A=2*dir(90), B=2*dir(18), C=2*dir(306), D=2*dir(234), E=2*dir(162), P=(C+D)/2, Q=C+3.10*dir(C--B), R=D+3.10*dir(D--E), S=C+4.0*dir(C--B), T=D+4.0*dir(D--E); draw(A--B--C--D--E--A^^E--T^^B--S^^R--A--Q^^A--P^^rightanglemark(A,Q,S)^^rightanglemark(A,R,T)); dot(O); label("$O$",O,dir(B)); label("$1$",(O+P)/2,W); label("$A$",A,dir(A)); label("$B$",B,dir(B)); label("$C$",C,dir(C)); label("$D$",D,dir(D)); label("$E$",E,dir(E)); label("$P$",P,dir(P)); label("$Q$",Q,dir(Q)); label("$R$",R,dir(R)); [/asy]

$\textbf{(A)}\ 3\qquad \textbf{(B)}\ 1 + \sqrt{5}\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 2 + \sqrt{5}\qquad \textbf{(E)}\ 5$

Solution

Problem 29

Two of the altitudes of the scalene triangle $ABC$ have length $4$ and $12$. If the length of the third altitude is also an integer, what is the biggest it can be?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 30

The number of real solutions $(x,y,z,w)$ of the simultaneous equations $2y = x + \frac{17}{x}, 2z = y + \frac{17}{y}, 2w = z + \frac{17}{z}, 2x = w + \frac{17}{w}$ is

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 16$

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png