Difference between revisions of "1986 AHSME Problems/Problem 29"

(Solution)
m (Cleaned up the solution)
Line 11: Line 11:
  
 
==Solution==
 
==Solution==
Assume we have a scalene triangle <math>ABC</math>. Arbitrarily, let 12 be the height to base <math>AB</math> and 4 be the height to base <math>AC</math>. Due to area equivalences, the base <math>AC</math> must be three times the length of <math>AB</math>.  
+
Assume we have a scalene triangle <math>ABC</math>. Arbitrarily, let <math>12</math> be the height to base <math>AB</math> and <math>4</math> be the height to base <math>AC</math>. Due to area equivalences, the base <math>AC</math> must be three times the length of <math>AB</math>.  
  
Let the base <math>AB</math> be <math>x</math>, thus making <math>AC = 3x</math>. Thus, setting the final height to base <math>BC</math> to <math>h</math>, we note that <math>(BC * h)/2 = (3x * 4)/2 = 6x</math>. Thus, <math>h = (12x / BC)</math>. We note that to maximize <math>h</math> we must minimize <math>BC</math>. Using the triangle inequality, <math>BC + AB > AC</math>, thus <math>BC + x > 3x</math> or <math>BC > 2x</math>. The minimum value of <math>BC</math> is <math>2x</math>, which would output <math>h = 6</math>. However, because <math>BC</math> must be larger than <math>2x</math>, the minimum integer height must be <math>5</math>.
+
Let the base <math>AB</math> be <math>x</math>, thus making <math>AC = 3x</math>. Thus, setting the final height to base <math>BC</math> to <math>h</math>, we note that (by area equivalence) <math>\frac{BC \cdot h}{2} = \frac{3x \cdot 4}{2} = 6x</math>. Thus, <math>h = \frac{12x}{BC}</math>. We note that to maximize <math>h</math> we must minimize <math>BC</math>. Using the triangle inequality, <math>BC + AB > AC</math>, thus <math>BC + x > 3x</math> or <math>BC > 2x</math>. The minimum value of <math>BC</math> is <math>2x</math>, which would output <math>h = 6</math>. However, because <math>BC</math> must be larger than <math>2x</math>, the minimum integer height must be <math>5</math>.
  
 
<math>\fbox{B}</math>
 
<math>\fbox{B}</math>

Revision as of 19:10, 1 April 2018

Problem

Two of the altitudes of the scalene triangle $ABC$ have length $4$ and $12$. If the length of the third altitude is also an integer, what is the biggest it can be?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ \text{none of these}$

Solution

Assume we have a scalene triangle $ABC$. Arbitrarily, let $12$ be the height to base $AB$ and $4$ be the height to base $AC$. Due to area equivalences, the base $AC$ must be three times the length of $AB$.

Let the base $AB$ be $x$, thus making $AC = 3x$. Thus, setting the final height to base $BC$ to $h$, we note that (by area equivalence) $\frac{BC \cdot h}{2} = \frac{3x \cdot 4}{2} = 6x$. Thus, $h = \frac{12x}{BC}$. We note that to maximize $h$ we must minimize $BC$. Using the triangle inequality, $BC + AB > AC$, thus $BC + x > 3x$ or $BC > 2x$. The minimum value of $BC$ is $2x$, which would output $h = 6$. However, because $BC$ must be larger than $2x$, the minimum integer height must be $5$.

$\fbox{B}$

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png