Difference between revisions of "1986 AIME Problems/Problem 10"

m (Fixed some LaTeX)
(Solution 3)
(9 intermediate revisions by the same user not shown)
Line 18: Line 18:
  
 
Therefore <math>m</math> is <math>7</math> mod <math>9</math> and <math>136</math> mod <math>222</math>. There is a shared factor in <math>3</math> in both, but the Chinese Remainder Theorem still tells us the value of <math>m</math> mod <math>666</math>, namely <math>m \equiv 358</math> mod <math>666</math>. We see that there are no other 3-digit integers that are <math>358</math> mod <math>666</math>, so <math>m = \boxed{358}</math>.
 
Therefore <math>m</math> is <math>7</math> mod <math>9</math> and <math>136</math> mod <math>222</math>. There is a shared factor in <math>3</math> in both, but the Chinese Remainder Theorem still tells us the value of <math>m</math> mod <math>666</math>, namely <math>m \equiv 358</math> mod <math>666</math>. We see that there are no other 3-digit integers that are <math>358</math> mod <math>666</math>, so <math>m = \boxed{358}</math>.
 +
 +
 +
=== Solution 3 ===
 +
 +
Let <math>n=abc</math> then
 +
<cmath>N=222(a+b+c)-n</cmath>
 +
<cmath>N=222(a+b+c)-100a-10b-c=3194</cmath>
 +
Since <math>0<100a+10b+c<1000</math>, we get the inequality
 +
<cmath>N<222(a+b+c)<N+1000</cmath>
 +
<cmath>3194<222(a+b+c)<4194</cmath>
 +
<cmath>14<a+b+c<19</cmath>
 +
Checking each of the multiples of <math>222</math> from <math>15\cdot222</math> to <math>18\cdot222</math> by subtracting <math>N</math> from each <math>222(a+b+c)</math>, we quickly find <math>n=\boxed{358}</math>
 +
 +
~ Nafer
  
 
== See also ==
 
== See also ==

Revision as of 19:03, 22 August 2019

Problem

In a parlor game, the magician asks one of the participants to think of a three digit number $(abc)$ where $a$, $b$, and $c$ represent digits in base $10$ in the order indicated. The magician then asks this person to form the numbers $(acb)$, $(bca)$, $(bac)$, $(cab)$, and $(cba)$, to add these five numbers, and to reveal their sum, $N$. If told the value of $N$, the magician can identify the original number, $(abc)$. Play the role of the magician and determine $(abc)$ if $N= 3194$.

Solution

Solution 1

Let $m$ be the number $100a+10b+c$. Observe that $3194+m=222(a+b+c)$ so

\[m\equiv -3194\equiv -86\equiv 136\pmod{222}\]

This reduces $m$ to one of $136, 358, 580, 802$. But also $a+b+c=\frac{3194+m}{222}>\frac{3194}{222}>14$ so $a+b+c\geq 15$. Of the four options, only $m = \boxed{358}$ satisfies this inequality.

Solution 2

As in Solution 1, $3194 + m \equiv 222(a+b+c) \pmod{222}$, and so as above we get $m \equiv 136 \pmod{222}$. We can also take this equation modulo $9$; note that $m \equiv a+b+c \pmod{9}$, so

\[3194 + m \equiv 222m \implies 5m \equiv 8 \implies m \equiv 7 \pmod{9}.\]

Therefore $m$ is $7$ mod $9$ and $136$ mod $222$. There is a shared factor in $3$ in both, but the Chinese Remainder Theorem still tells us the value of $m$ mod $666$, namely $m \equiv 358$ mod $666$. We see that there are no other 3-digit integers that are $358$ mod $666$, so $m = \boxed{358}$.


Solution 3

Let $n=abc$ then \[N=222(a+b+c)-n\] \[N=222(a+b+c)-100a-10b-c=3194\] Since $0<100a+10b+c<1000$, we get the inequality \[N<222(a+b+c)<N+1000\] \[3194<222(a+b+c)<4194\] \[14<a+b+c<19\] Checking each of the multiples of $222$ from $15\cdot222$ to $18\cdot222$ by subtracting $N$ from each $222(a+b+c)$, we quickly find $n=\boxed{358}$

~ Nafer

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png