Difference between revisions of "1986 AIME Problems/Problem 11"

m (Fixed some grammar)
(Solution)
Line 14: Line 14:
  
 
We want the coefficient of the <math>y^2</math> term of each power of each binomial, which by the binomial theorem is <math>{2\choose 2} + {3\choose 2} + \cdots + {17\choose 2}</math>. The [[Hockey Stick Identity]] tells us that this quantity is equal to <math>{18\choose 3} = \boxed{816}</math>.
 
We want the coefficient of the <math>y^2</math> term of each power of each binomial, which by the binomial theorem is <math>{2\choose 2} + {3\choose 2} + \cdots + {17\choose 2}</math>. The [[Hockey Stick Identity]] tells us that this quantity is equal to <math>{18\choose 3} = \boxed{816}</math>.
 +
 +
=== Solution 3 ===
 +
Again, notice <math>x=y-1</math>. Substituting <math>y-1</math> for <math>x</math> in <math>f(x)</math> gives:
 +
<cmath>\begin{align*}1 - x + x^2 + \cdots - x^{17} & = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + \cdots - (y - 1)^{17} \\
 +
& = 1 + (1 - y) + (1 - y)^2 + (1 - y)^3 \cdots + (1 - y)^{17}\end{align*}.</cmath>
 +
From binomial theorem, the coefficient of the <math>y^2</math> term is <math>{2\choose 0} + {3\choose 1} + \cdots + {17\choose 15}</math>. This is actually the sum of the first 16 triangular numbers, which evaluates to <math>\frac{(16)(17)(18)}{6} = \boxed{816}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 23:47, 31 December 2019

Problem

The polynomial $1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ may be written in the form $a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$, where $y=x+1$ and the $a_i$'s are constants. Find the value of $a_2$.

Solution

Solution 1

Using the geometric series formula, $1 - x + x^2 + \cdots - x^{17} = \frac {1 - x^{18}}{1 + x} = \frac {1-x^{18}}{y}$. Since $x = y - 1$, this becomes $\frac {1-(y - 1)^{18}}{y}$. We want $a_2$, which is the coefficient of the $y^3$ term in $-(y - 1)^{18}$ (because the $y$ in the denominator reduces the degrees in the numerator by $1$). By the Binomial Theorem, this is $(-1) \cdot (-1)^{15}{18 \choose 3} = \boxed{816}$.

Solution 2

Again, notice $x = y - 1$. So

\begin{align*}1 - x + x^2 + \cdots - x^{17} & = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + \cdots - (y - 1)^{17} \\ & = 1 + (1 - y) + (1 - y)^2 + (1 - y)^3 \cdots + (1 - y)^{17}\end{align*}.

We want the coefficient of the $y^2$ term of each power of each binomial, which by the binomial theorem is ${2\choose 2} + {3\choose 2} + \cdots + {17\choose 2}$. The Hockey Stick Identity tells us that this quantity is equal to ${18\choose 3} = \boxed{816}$.

Solution 3

Again, notice $x=y-1$. Substituting $y-1$ for $x$ in $f(x)$ gives: \begin{align*}1 - x + x^2 + \cdots - x^{17} & = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + \cdots - (y - 1)^{17} \\ & = 1 + (1 - y) + (1 - y)^2 + (1 - y)^3 \cdots + (1 - y)^{17}\end{align*}. From binomial theorem, the coefficient of the $y^2$ term is ${2\choose 0} + {3\choose 1} + \cdots + {17\choose 15}$. This is actually the sum of the first 16 triangular numbers, which evaluates to $\frac{(16)(17)(18)}{6} = \boxed{816}$.

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS