1986 AIME Problems/Problem 15

Revision as of 21:49, 19 December 2009 by Just Beginner (talk | contribs) (Solution)

Problem

Let triangle $\displaystyle ABC$ be a right triangle in the xy-plane with a right angle at $\displaystyle C_{}$. Given that the length of the hypotenuse $\displaystyle AB$ is $\displaystyle 60$, and that the medians through $\displaystyle A$ and $\displaystyle B$ lie along the lines $\displaystyle y=x+3$ and $\displaystyle y=2x+4$ respectively, find the area of triangle $\displaystyle ABC$.

Solution

Translate so the medians are $y = x$, and $y = 2x$, then model the points $A: (a,a)$ and $B: (b,2b)$. $(0,0)$ is the centroid, and is the average of the vertices, so $C: (- a - b, - a - 2b)$
$AB = 60$ so

$3600 = (a - b)^2 + (2b - a)^2$
$3600 = 2a^2 + 5b^2 - 6ab$ (1)

AC and BC are perpendicular, so the product of their slopes is -1, giving

$\left(\frac {2a + 2b}{2a + b}\right)\left(\frac {a + 4b}{a + 2b}\right) = - 1$
$2a^2 + 5b^2 = - \frac {15}{2}ab$ (2)

Combining (1) and (2), we get $ab = - \frac {800}{3}$

Using the determinant product for area of a triangle (this simplifies nicely, add columns 1 and 2, add rows 2 and 3), the area is $\left|\frac {3}{2}ab\right|$, so we get the answer to be $400$. $/square$

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions