1986 AIME Problems/Problem 3

Revision as of 14:43, 15 April 2017 by Zeroman (talk | contribs) (Solution)

Problem

If $\tan x+\tan y=25$ and $\cot x + \cot y=30$, what is $\tan(x+y)$?

Solution 1

Since $\cot$ is the reciprocal function of $\tan$:

$\cot x + \cot y = \frac{1}{\tan x} + \frac{1}{\tan y} = \frac{\tan x + \tan y}{\tan x \cdot \tan y} = 30$

Thus, $\tan x \cdot \tan y = \frac{\tan x + \tan y}{30} = \frac{25}{30} = \frac{5}{6}$

Using the tangent addition formula:

$\tan(x+y) = \frac{\tan x + \tan y}{1-\tan x \cdot \tan y} = \frac{25}{1-\frac{5}{6}} = \boxed{150}$.

Solution 2

Using the formula for tangent of a sum, $\tan(x+y)=\frac{\tan x + \tan y}{1-\tan x \tan y} = \frac{25}{1-\tan x \tan y}$. We only need to find $\tan x \tan y$.

We know that $25 = \tan x + \tan y = \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}$. Cross multiplying, we have $\frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y} = \frac{\sin(x+y)}{\cos x \cos y} = 25$.

Similarly, we have $30 = \cot x + \cot y = \frac{\cos x}{\sin x} + \frac{\cos y}{\sin y} = \frac{\cos x \sin y + \sin x \cos y}{\sin x \sin y} = \frac{\sin(x+y)}{\sin x \sin y}$.

Dividing:

$\frac{25}{30} = \frac{\frac{\sin(x+y)}{\cos x \cos y}}{\frac{\sin(x+y)}{\sin x \sin y}} = \frac{\sin x \sin y}{\cos x \cos y} = \tan x \tan y = \frac{5}{6}$. Plugging in to the earlier formula, we have $\tan(x+y) = \frac{25}{1-\frac{5}{6}} = \frac{25}{\frac{1}{6}} = \boxed{150}$.

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png