Difference between revisions of "1986 AIME Problems/Problem 5"

(Solution 2)
m (Solution 2)
Line 6: Line 6:
  
 
== Solution 2 ==
 
== Solution 2 ==
In a similar manner, we can apply synthetic division. We are looking for <math>\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}</math>. Again, <math>n + 10</math> must be a factor of <math>900 \Longrightarrow n = \boxed{890}</math>.
+
In a similar manner, we can apply synthetic division. We are looking for <math>\frac{n^3 + 100}{n + 10} = n^2 - 10n + 100 - \frac{900}{n + 10}</math>. Again, <math>n + 10</math> must be a factor of <math>900 \Longrightarrow n = \boxed{890}</math>.
  
 
==Solution 3==
 
==Solution 3==

Revision as of 23:17, 16 February 2020

Problem

What is that largest positive integer $n$ for which $n^3+100$ is divisible by $n+10$?

Solution 1

If $n+10 \mid n^3+100$, $\gcd(n^3+100,n+10)=n+10$. Using the Euclidean algorithm, we have $\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)$ $= \gcd(100n+100,n+10)$ $= \gcd(-900,n+10)$, so $n+10$ must divide $900$. The greatest integer $n$ for which $n+10$ divides $900$ is $\boxed{890}$; we can double-check manually and we find that indeed $900 \mid 890^3+100$.

Solution 2

In a similar manner, we can apply synthetic division. We are looking for $\frac{n^3 + 100}{n + 10} = n^2 - 10n + 100 - \frac{900}{n + 10}$. Again, $n + 10$ must be a factor of $900 \Longrightarrow n = \boxed{890}$.

Solution 3

The key to this problem is to realize that $n+10 \mid n^3 +1000$ for all $n$. Since we are asked to find the maximum possible $n$ such that $n+10 \mid n^3 +100$, we have: $n+10 \mid ((n^3 +1000) - (n^3 +100) \longrightarrow n+10 \mid 900$. This is because of the property that states that if $a \mid b$ and $a \mid c$, then $a \mid b \pm c$. Since, the largest factor of 900 is itself we have: $n+10=900 \Longrightarrow \boxed{n = 890}$

~qwertysri987

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png