1986 AIME Problems/Problem 5

Revision as of 20:09, 23 March 2007 by Azjps (talk | contribs) (Solution: synthetic substitution)

Problem

What is that largest positive integer $n$ for which $n^3+100$ is divisible by $n+10$?

Solution

If $n+10 \mid n^3+100$, $\gcd(n^3+100,n+10)=n+10$. Using the Euclidean algorithm, we have $\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)= \gcd(100n+100,n+10)= \gcd(-900,n+10)$, so $n+10$ must divide 900. The greatest integer $n$ for which $n+10$ divides 900 is 890; we can double-check manually and we find that indeed $900 \mid 890^3+100$.

In a similar manner, we can apply synthetic substitution. We are looking for $\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}$. Again, $n + 10$ must be a factor of $900 \Longrightarrow n = 890$.

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS