1986 AIME Problems/Problem 7

Revision as of 15:41, 24 March 2013 by Noobynoob (talk | contribs) (Solution 2)

Problem

The increasing sequence $1,3,4,9,10,12,13\cdots$ consists of all those positive integers which are powers of 3 or sums of distinct powers of 3. Find the $100^{\mbox{th}}$ term of this sequence.

Solution

Solution 1

Rewrite all of the terms in base 3. Since the numbers are sums of distinct powers of 3, in base 3 each number is a sequence of 1s and 0s (if there is a 2, then it is no longer the sum of distinct powers of 3). Therefore, we can recast this into base 2 (binary) in order to determine the 100th number. $100$ is equal to $64 + 32 + 4$, so in binary form we get $1100100$. However, we must change it back to base 10 for the answer, which is $3^6 + 3^5 + 3^2 = 729 + 243 + 9 = \boxed {981}$.

Solution 2

Notice that the first term of the sequence is $1$, the second is $3$, the fourth is $9$, and so on. Thus the $64th$ term of the sequence is $729$. Now out of $64$ terms which are of the form $729$ + $'''S'''$, $32$ of them include $243$ and $32$ do not. The smallest term that includes $243$, i.e. $972$, is greater than the largest term which does not, or $854$. So the $95$th term will be $972$, then $973$, then $975$, then $976$, and finally $\boxed{981}$

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS