During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

# Difference between revisions of "1987 AHSME Problems/Problem 13"

## Problem

A long piece of paper $5$ cm wide is made into a roll for cash registers by wrapping it $600$ times around a cardboard tube of diameter $2$ cm, forming a roll $10$ cm in diameter. Approximate the length of the paper in meters. (Pretend the paper forms $600$ concentric circles with diameters evenly spaced from $2$ cm to $10$ cm.)

$\textbf{(A)}\ 36\pi \qquad \textbf{(B)}\ 45\pi \qquad \textbf{(C)}\ 60\pi \qquad \textbf{(D)}\ 72\pi \qquad \textbf{(E)}\ 90\pi$

## Solution

Notice (by imagining unfolding the roll), that the length of the paper is equal to the sum of the circumferences of the concentric circles, which is $\pi$ times the sum of the diameters. Now the, the diameters form an arithmetic series with first term $2$, last term $10$, and $600$ terms in total, so using the formula $\frac{1}{2}n(a+l)$, the sum is $300 \times 12 = 3600$, so the length is $3600\pi$ centimetres, or $36\pi$ metres, which is answer $\boxed{\text{A}}$.