Difference between revisions of "1988 AIME Problems/Problem 7"

m
m (Fixed some spelling and grammar)
(7 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{empty}}
 
 
 
== Problem ==
 
== Problem ==
 +
In [[triangle]] <math>ABC</math>, <math>\tan \angle CAB = 22/7</math>, and the [[altitude]] from <math>A</math> divides <math>BC</math> into [[segment]]s of length 3 and 17.  What is the area of triangle <math>ABC</math>?
  
 
== Solution ==
 
== Solution ==
 +
<center>[[Image:AIME_1988_Solution_07.png]]</center>
 +
 +
Let <math>D</math> be the intersection of the [[altitude]] with <math>\overline{BC}</math>, and <math>h</math> be the length of the altitude. [[Without loss of generality]], let <math>BD = 17</math> and <math>CD = 3</math>. Then <math>\tan \angle DAB = \frac{17}{h}</math> and <math>\tan \angle CAD = \frac{3}{h}</math>. Using the [[Trigonometric_identities#Angle_Addition.2FSubtraction_Identities|tangent sum formula]],
 +
 +
<cmath>
 +
\begin{align*}
 +
\tan CAB &= \tan (DAB + CAD)\\
 +
\frac{22}{7} &= \frac{\tan DAB + \tan CAD}{1 - \tan DAB \cdot \tan CAD} \\
 +
&=\frac{\frac{17}{h} + \frac{3}{h}}{1 - \left(\frac{17}{h}\right)\left(\frac{3}{h}\right)} \\
 +
\frac{22}{7} &= \frac{20h}{h^2 - 51}\\
 +
0 &= 22h^2 - 140h - 22 \cdot 51\\
 +
0 &= (11h + 51)(h - 11)
 +
\end{align*}
 +
</cmath>
 +
 +
The positive value of <math>h</math> is <math>11</math>, so the area is <math>\frac{1}{2}(17 + 3)\cdot 11 = \boxed{110}</math>.
  
 
== See also ==
 
== See also ==
* [[1988 AIME Problems/Problem 6 | Previous problem]]
+
{{AIME box|year=1988|num-b=6|num-a=8}}
* [[1988 AIME Problems/Problem 8 | Next problem]]
+
 
* [[1988 AIME Problems]]
+
[[Category:Intermediate Trigonometry Problems]]
 +
{{MAA Notice}}

Revision as of 19:20, 27 February 2018

Problem

In triangle $ABC$, $\tan \angle CAB = 22/7$, and the altitude from $A$ divides $BC$ into segments of length 3 and 17. What is the area of triangle $ABC$?

Solution

AIME 1988 Solution 07.png

Let $D$ be the intersection of the altitude with $\overline{BC}$, and $h$ be the length of the altitude. Without loss of generality, let $BD = 17$ and $CD = 3$. Then $\tan \angle DAB = \frac{17}{h}$ and $\tan \angle CAD = \frac{3}{h}$. Using the tangent sum formula,

\begin{align*} \tan CAB &= \tan (DAB + CAD)\\ \frac{22}{7} &= \frac{\tan DAB + \tan CAD}{1 - \tan DAB \cdot \tan CAD} \\ &=\frac{\frac{17}{h} + \frac{3}{h}}{1 - \left(\frac{17}{h}\right)\left(\frac{3}{h}\right)} \\ \frac{22}{7} &= \frac{20h}{h^2 - 51}\\ 0 &= 22h^2 - 140h - 22 \cdot 51\\ 0 &= (11h + 51)(h - 11) \end{align*}

The positive value of $h$ is $11$, so the area is $\frac{1}{2}(17 + 3)\cdot 11 = \boxed{110}$.

See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png