# Difference between revisions of "1988 AJHSME Problems/Problem 4"

## Problem

The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by $\text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$ $[asy] unitsize(12); for(int a=0; a<7; ++a) { fill((2a,0)--(2a+1,0)--(2a+1,1)--(2a,1)--cycle,black); draw((2a+1,0)--(2a+2,0)); } for(int b=7; b<15; ++b) { fill((b,14-b)--(b+1,14-b)--(b+1,15-b)--(b,15-b)--cycle,black); } for(int c=1; c<7; ++c) { fill((c,c)--(c+1,c)--(c+1,c+1)--(c,c+1)--cycle,black); } for(int d=1; d<6; ++d) { draw((2d+1,1)--(2d+2,1)); } fill((6,4)--(7,4)--(7,5)--(6,5)--cycle,black); draw((5,4)--(6,4)); fill((7,5)--(8,5)--(8,6)--(7,6)--cycle,black); draw((7,4)--(8,4)); fill((8,4)--(9,4)--(9,5)--(8,5)--cycle,black); draw((9,4)--(10,4)); label("same",(6.3,2.45),N); label("pattern here",(7.5,1.4),N); [/asy]$

## Solution

If, for a moment, we disregard the white squares, we notice that the number of black squares in each row increases by 1 continuously as we go down the pyramid. Thus, the number of black squares is $1 + 2 + \cdots + 8$.

Same goes for the white squares, except it starts a row later, making it $1 + 2 + \cdots + 7$.

Subtracting the number of white squares from the number of black squares... $$1 + 2 + \cdots + 7 + 8 - (1 + 2 + \cdots + 7) = 8 \Rightarrow (B)$$