Difference between revisions of "1989 AHSME Problems/Problem 19"

(Solution)
(Solution)
Line 3: Line 3:
 
<math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \frac{18}{\pi^2} } \qquad \mathrm{(C) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(D) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(E) \frac{9}{\pi^2}(\sqrt{3}+3) }  </math>
 
<math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \frac{18}{\pi^2} } \qquad \mathrm{(C) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(D) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(E) \frac{9}{\pi^2}(\sqrt{3}+3) }  </math>
  
=== Solution ===
+
===Solution===
  
 
The three arcs make up the entire circle, so the circumference of the circle is <math>3+4+5=12</math> and the radius is <math>\frac{12}{2\pi}=\frac{6}{\pi}</math>. Also, the lengths of the arcs are proportional to their corresponding central angles. Thus, we can write the values of the arcs as <math>3\theta</math>, <math>4\theta</math>, and <math>5\theta</math> for some <math>\theta</math>. By Circle Angle Sum, we obtain <math>3\theta+4\theta+5\theta=360</math>. Solving yields <math>\theta=30</math>. Thus, the angles of the triangle are <math>90</math>, <math>120</math>, and <math>150</math>. Using <math>[ABC]=\frac{1}{2}ab\sin{C}</math>, we obtain <math>\frac{r^2}{2}(\sin{90}+\sin{120}+\sin{150})</math>. Substituting <math>\frac{6}{\pi}</math> for <math>r</math> and evaluating yields <math>\frac{9}{\pi}(\sqrt{3}+3)\implies{\boxed{E}}</math>.
 
The three arcs make up the entire circle, so the circumference of the circle is <math>3+4+5=12</math> and the radius is <math>\frac{12}{2\pi}=\frac{6}{\pi}</math>. Also, the lengths of the arcs are proportional to their corresponding central angles. Thus, we can write the values of the arcs as <math>3\theta</math>, <math>4\theta</math>, and <math>5\theta</math> for some <math>\theta</math>. By Circle Angle Sum, we obtain <math>3\theta+4\theta+5\theta=360</math>. Solving yields <math>\theta=30</math>. Thus, the angles of the triangle are <math>90</math>, <math>120</math>, and <math>150</math>. Using <math>[ABC]=\frac{1}{2}ab\sin{C}</math>, we obtain <math>\frac{r^2}{2}(\sin{90}+\sin{120}+\sin{150})</math>. Substituting <math>\frac{6}{\pi}</math> for <math>r</math> and evaluating yields <math>\frac{9}{\pi}(\sqrt{3}+3)\implies{\boxed{E}}</math>.
 +
 +
 +
-Solution by '''thecmd999'''

Revision as of 01:34, 4 November 2012

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths 3, 4, and 5. What is the area of the triangle?

$\mathrm{(A) \ 6 } \qquad \mathrm{(B) \frac{18}{\pi^2} } \qquad \mathrm{(C) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(D) \frac{9}{\pi^2}(\sqrt{3}-1) } \qquad \mathrm{(E) \frac{9}{\pi^2}(\sqrt{3}+3) }$

Solution

The three arcs make up the entire circle, so the circumference of the circle is $3+4+5=12$ and the radius is $\frac{12}{2\pi}=\frac{6}{\pi}$. Also, the lengths of the arcs are proportional to their corresponding central angles. Thus, we can write the values of the arcs as $3\theta$, $4\theta$, and $5\theta$ for some $\theta$. By Circle Angle Sum, we obtain $3\theta+4\theta+5\theta=360$. Solving yields $\theta=30$. Thus, the angles of the triangle are $90$, $120$, and $150$. Using $[ABC]=\frac{1}{2}ab\sin{C}$, we obtain $\frac{r^2}{2}(\sin{90}+\sin{120}+\sin{150})$. Substituting $\frac{6}{\pi}$ for $r$ and evaluating yields $\frac{9}{\pi}(\sqrt{3}+3)\implies{\boxed{E}}$.


-Solution by thecmd999