1989 AHSME Problems/Problem 7

Revision as of 17:04, 21 October 2018 by Giraffefun (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In $\triangle ABC$, $\angle A = 100^\circ$, $\angle B = 50^\circ$, $\angle C = 30^\circ$, $\overline{AH}$ is an altitude, and $\overline{BM}$ is a median. Then $\angle MHC=$

[asy] draw((0,0)--(16,0)--(6,6)--cycle); draw((6,6)--(6,0)--(11,3)--(0,0)); dot((6,6)); dot((0,0)); dot((11,3)); dot((6,0)); dot((16,0)); label("A", (6,6), N); label("B", (0,0), W); label("C", (16,0), E); label("H", (6,0), S); label("M", (11,3), NE);[/asy]

$\textrm{(A)}\ 15^\circ\qquad\textrm{(B)}\ 22.5^\circ\qquad\textrm{(C)}\ 30^\circ\qquad\textrm{(D)}\ 40^\circ\qquad\textrm{(E)}\ 45^\circ$

Solution

We are told that $\overline{BM}$ is a median, so $\overline{AM}=\overline{MC}$. Drop an altitude from $M$ to $\overline{HC}$, adding point $N$, and you can see that $\triangle ACH$ and $\triangle MCN$ are similar, implying $\overline{HN}=\overline{NC}$, implying that $\triangle MNH$ and $\triangle MNC$ are congruent, so $\angle MHC=\angle C=30^\circ$.

[asy] draw((0,0)--(16,0)--(6,6)--cycle); draw((6,6)--(6,0)--(11,3)--(0,0)); draw((11,3)--(11,0)); dot((6,6)); dot((0,0)); dot((11,3)); dot((6,0)); dot((16,0)); dot((11,0)); label("A", (6,6), N); label("B", (0,0), W); label("C", (16,0), E); label("H", (6,0), S); label("M", (11,3), NE); label("N", (11,0), S);[/asy]

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS