Difference between revisions of "1989 AIME Problems/Problem 10"

m
m (oops.. entered the text of the correct problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A sample of 121 integers is given, each between 1 and 1000 inclusive, with repetitions allowed. The sample has a unique mode (most frequent value). Let <math>D^{}_{}</math> be the difference between the mode and the arithmetic mean of the sample. What is the largest possible value of <math>\lfloor D^{}_{}\rfloor</math>? (For real <math>x^{}_{}</math>, <math>\lfloor x^{}_{}\rfloor</math> is the greatest integer less than or equal to <math>x^{}_{}</math>.)
+
Let <math>a_{}^{}</math>, <math>b_{}^{}</math>, <math>c_{}^{}</math> be the three sides of a triangle, and let <math>\alpha_{}^{}</math>, <math>\beta_{}^{}</math>, <math>\gamma_{}^{}</math>, be the angles opposite them. If <math>a^2+b^2=1989^{}_{}c^2</math>, find
 +
<center><math>\frac{\cot \gamma}{\cot \alpha+\cot \beta}</math></center>
  
 
== Solution ==
 
== Solution ==

Revision as of 23:15, 24 February 2007

Problem

Let $a_{}^{}$, $b_{}^{}$, $c_{}^{}$ be the three sides of a triangle, and let $\alpha_{}^{}$, $\beta_{}^{}$, $\gamma_{}^{}$, be the angles opposite them. If $a^2+b^2=1989^{}_{}c^2$, find

$\frac{\cot \gamma}{\cot \alpha+\cot \beta}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also