Difference between revisions of "1989 AIME Problems/Problem 10"

m (See also)
Line 26: Line 26:
  
 
== See also ==
 
== See also ==
* [[1989 AIME Problems/Problem 11|Next Problem]]
+
{{AIME box|year=1989|num-b=9|num-a=11}}
* [[1989 AIME Problems/Problem 9|Previous Problem]]
 
* [[1989 AIME Problems]]
 

Revision as of 20:24, 11 November 2007

Problem

Let $a_{}^{}$, $b_{}^{}$, $c_{}^{}$ be the three sides of a triangle, and let $\alpha_{}^{}$, $\beta_{}^{}$, $\gamma_{}^{}$, be the angles opposite them. If $a^2+b^2=1989^{}_{}c^2$, find

$\frac{\cot \gamma}{\cot \alpha+\cot \beta}$

Solution

We can draw the altitude h to c, to get two right triangles.

$\cot{\alpha}+\cot{\beta}=\frac{c}{h}$, from the definition of the cotangent.

From the definition of area, $h=\frac{2A}{c}$, so therefore $\cot{\alpha}+\cot{\beta}=\frac{c^2}{2A}$

Now we evaluate the numerator:

$\cot{\gamma}=\frac{\cos{\gamma}}{\sin{\gamma}}$.

$\cos{\gamma}=\frac{1988c^2}{2ab}$, from the Law of Cosines

$\sin{\gamma}=\frac{c}{2R}$, where R is the circumradius.

$\cot{\gamma}=\frac{1988cR}{ab}$

Since $R=\frac{abc}{4A}$, $\cot{\gamma}=\frac{1988c^2}{4A}$

$\frac{\cot \gamma}{\cot \alpha+\cot \beta}=\frac{\frac{1988c^2}{4A}}{\frac{c^2}{2A}}=\frac{1988}{2}=994$


See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions