Difference between revisions of "1989 AIME Problems/Problem 13"

m
Line 12: Line 12:
 
[[Category:Intermediate Combinatorics Problems]]
 
[[Category:Intermediate Combinatorics Problems]]
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Number Theory Problems]]
 +
{{MAA Notice}}

Revision as of 19:17, 4 July 2013

Problem

Let $S$ be a subset of $\{1,2,3,\ldots,1989\}$ such that no two members of $S$ differ by $4$ or $7$. What is the largest number of elements $S$ can have?

Solution

We first show that we can choose at most 5 numbers from $\{1, 2, \ldots , 11\}$ such that no two numbers have a difference of $4$ or $7$. We take the smallest number to be $1$, which rules out $5,8$. Now we can take at most one from each of the pairs: $[2,9]$, $[3,7]$, $[4,11]$, $[6,10]$. Now, $1989 = 180\cdot 11 + 9$, but because this isn't an exact multiple of $5$, we need to consider the last $9$ numbers.

Now let's examine $\{1, 2, \ldots , 20\}$. If we pick $1, 3, 4, 6, 9$ from the first $11$ numbers, then we're allowed to pick $11 + 1$, $11 + 3$, $11 + 4$, $11 + 6$, $11 + 9$. This means we get 10 members from the 20 numbers. Our answer is thus $179\cdot 5 + 10 = \boxed{905}$.

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png