1990 AIME Problems/Problem 7

Revision as of 21:42, 2 September 2019 by Nafer (talk | contribs) (Solution 4)

Problem

A triangle has vertices $P_{}^{}=(-8,5)$, $Q_{}^{}=(-15,-19)$, and $R_{}^{}=(1,-7)$. The equation of the bisector of $\angle P$ can be written in the form $ax+2y+c=0_{}^{}$. Find $a+c_{}^{}$.

[asy] import graph; pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17); MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f); D(P--Q--R--cycle);D(P--T,EndArrow(2mm)); D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); [/asy]

Solution

Use the distance formula to determine the lengths of each of the sides of the triangle. We find that it has lengths of side $15,\ 20,\ 25$, indicating that it is a $3-4-5$ right triangle. At this point, we just need to find another point that lies on the bisector of $\angle P$.

Solution 1

[asy] import graph; pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17),U=IP(P--T,Q--R); MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f);MP("P'",U,SE,f); D(P--Q--R--cycle);D(U);D(P--U); D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); [/asy]

Use the angle bisector theorem to find that the angle bisector of $\angle P$ divides $QR$ into segments of length $\frac{25}{x} = \frac{15}{20 -x} \Longrightarrow x = \frac{25}{2},\ \frac{15}{2}$. It follows that $\frac{QP'}{RP'} = \frac{5}{3}$, and so $P' = \left(\frac{5x_R + 3x_Q}{8},\frac{5y_R + 3y_Q}{8}\right) = (-5,-23/2)$.

The desired answer is the equation of the line $PP'$. $PP'$ has slope $\frac{-11}{2}$, from which we find the equation to be $11x + 2y + 78 = 0$. Therefore, $a+c = \boxed{089}$.

Solution 2

[asy] import graph; pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17); MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,NE,f);MP("S",S,E,f); D(P--Q--R--cycle);D(R--S--Q,dashed);D(T);D(P--T); D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); [/asy]

Extend $PR$ to a point $S$ such that $PS = 25$. This forms an isosceles triangle $PQS$. The coordinates of $S$, using the slope of $PR$ (which is $-4/3$), can be determined to be $(7,-15)$. Since the angle bisector of $\angle P$ must touch the midpoint of $QS \Rightarrow (-4,-17)$, we have found our two points. We reach the same answer of $11x + 2y + 78 = 0$.

Solution 3

[asy] import graph; pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17),U=IP(P--T,Q--R); MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f);MP("P'",U,SE,f); D(P--Q--R--cycle);D(U);D(P--U); D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); D(Q--(U.x,Q.y)--U,dashed);D(rightanglemark(Q,(U.x,Q.y),U,20),dashed); [/asy]

By the angle bisector theorem as in solution 1, we find that $QP' = 25/2$. If we draw the right triangle formed by $Q, P',$ and the point directly to the right of $Q$ and below $P'$, we get another $3-4-5 \triangle$ (since the slope of $QR$ is $3/4$). Using this, we find that the horizontal projection of $QP'$ is $10$ and the vertical projection of $QP'$ is $15/2$.

Thus, the angle bisector touches $QR$ at the point $\left(-15 + 10, -19 + \frac{15}{2}\right) = \left(-5,-\frac{23}{2}\right)$, from where we continue with the first solution.


Solution 4

[asy] import graph; pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17),U=IP(P--T,Q--R); MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f);MP("P'",U,SE,f); D(P--Q--R--cycle);D(U);D(P--U); D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); label("$X_1$",(-9.5,1),W); label("$X_2$",(-3,1),W); [/asy]

Let $X_1$, $X_2$ be the x-intercept of $PQ$, $PR$, respectively.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png