Difference between revisions of "1990 IMO Problems/Problem 4"

m
Line 1: Line 1:
4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all <math>x, y\in{Q^+}</math>.
+
==Problem==
 +
Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all <math>x, y\in{Q^+}</math>.
 +
 
 +
==Solution==
 +
{{solution}}
 +
 
 +
== See Also == {{IMO box|year=1990|num-b=3|num-a=5}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Functional Equation Problems]]
 
[[Category:Functional Equation Problems]]

Revision as of 13:46, 30 January 2021

Problem

Let $\mathbb{Q^+}$ be the set of positive rational numbers. Construct a function $f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}$ such that $f(xf(y)) = \frac{f(x)}{y}$ for all $x, y\in{Q^+}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1990 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions