1990 USAMO Problems/Problem 5

Revision as of 04:02, 9 August 2009 by Vallannion (talk | contribs)

Problem

An acute-angled triangle $ABC$ is given in the plane. The circle with diameter $\, AB \,$ intersects altitude $\, CC' \,$ and its extension at points $\, M \,$ and $\, N \,$, and the circle with diameter $\, AC \,$ intersects altitude $\, BB' \,$ and its extensions at $\, P \,$ and $\, Q \,$. Prove that the points $\, M, N, P, Q \,$ lie on a common circle.

Solution

Let $A'$ be the intersection of the two circles. $AA'$ is perpendicular to both $BA', CA'$ implying $B, C, A'$ are collinear. Since $A'$ is the foot of the altitude from $A$, $A, H, A'$ are concurrent, where $H$ is the orthocentre.

Now, $H$ is also the intersection of $BB', CC'$ which means that $AA', MN, PQ$ are concurrent. Since $A, M, N, A'$ and $A, P, Q, A'$ are cyclic, $M, N, P, Q$ are cyclic by the radical axis theorem.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Resources

1990 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Final Question
1 2 3 4 5
All USAMO Problems and Solutions