Difference between revisions of "1991 AHSME Problems/Problem 1"

(Added solution and changed format of answer choices.)
Line 1: Line 1:
 +
==Problem==
 
If for any three distinct numbers <math>a</math>, <math>b</math>, and <math>c</math> we define <math>f(a,b,c)=\frac{c+a}{c-b}</math>, then <math>f(1,-2,-3)</math> is
 
If for any three distinct numbers <math>a</math>, <math>b</math>, and <math>c</math> we define <math>f(a,b,c)=\frac{c+a}{c-b}</math>, then <math>f(1,-2,-3)</math> is
  
(A) <math>-2</math>  (B) <math>-\frac{2}{5}</math> (C) <math>-\frac{1}{4}</math> (D) <math>\frac{2}{5}</math> (E) <math>2</math>
+
<math> \textbf {(A) } -2 \qquad \textbf {(B) } -\frac{2}{5} \qquad \textbf {(C) } -\frac{1}{4} \qquad \textbf {(D) } \frac{2}{5} \qquad \textbf {(E) } 2 </math>
 +
 
 +
==Solution==
 +
If we plug in <math>1</math> as <math>a</math>, <math>-2</math> as <math>b</math>, and <math>-3</math> as <math>c</math> in the expression <math>\frac{c+a}{c-b}</math>, then we get <math>\frac{-3+1}{-3-(-2)}=\frac{-2}{-1}=2</math>, which is choice <math>\boxed{\textbf{A}}</math>.
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:51, 22 July 2014

Problem

If for any three distinct numbers $a$, $b$, and $c$ we define $f(a,b,c)=\frac{c+a}{c-b}$, then $f(1,-2,-3)$ is

$\textbf {(A) } -2 \qquad \textbf {(B) } -\frac{2}{5} \qquad \textbf {(C) } -\frac{1}{4} \qquad \textbf {(D) } \frac{2}{5} \qquad \textbf {(E) } 2$

Solution

If we plug in $1$ as $a$, $-2$ as $b$, and $-3$ as $c$ in the expression $\frac{c+a}{c-b}$, then we get $\frac{-3+1}{-3-(-2)}=\frac{-2}{-1}=2$, which is choice $\boxed{\textbf{A}}$. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png