Difference between revisions of "1991 AHSME Problems/Problem 2"

(Added solution and changed format of answer choices.)
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 
<math>|3-\pi|=</math>
 
<math>|3-\pi|=</math>
  
Line 6: Line 7:
 
==Solution==
 
==Solution==
 
Since <math>\pi>3</math>, the value of <math>\abs{3-\pi}</math> is negative. The absolute value of a negative quantity is the negative quantity multiplied by <math>-1</math>, or the negative of that quantity. Therefore <math>|3-\pi|=-(3-\pi)=\pi-3</math>, which is choice <math>\boxed{\textbf{E}}</math>
 
Since <math>\pi>3</math>, the value of <math>\abs{3-\pi}</math> is negative. The absolute value of a negative quantity is the negative quantity multiplied by <math>-1</math>, or the negative of that quantity. Therefore <math>|3-\pi|=-(3-\pi)=\pi-3</math>, which is choice <math>\boxed{\textbf{E}}</math>
 +
 +
 +
== See also ==
 +
{{AHSME box|year=1991|num-b=16|num-a=18}} 
 +
 +
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:13, 28 September 2014

Problem

$|3-\pi|=$

$\textbf{(A)\ }\frac{1}{7}\qquad\textbf{(B)\ }0.14\qquad\textbf{(C)\ }3-\pi\qquad\textbf{(D)\ }3+\pi\qquad\textbf{(E)\ }\pi-3$

Solution

Since $\pi>3$, the value of $\abs{3-\pi}$ (Error compiling LaTeX. ! Undefined control sequence.) is negative. The absolute value of a negative quantity is the negative quantity multiplied by $-1$, or the negative of that quantity. Therefore $|3-\pi|=-(3-\pi)=\pi-3$, which is choice $\boxed{\textbf{E}}$


See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS