Difference between revisions of "1991 AHSME Problems/Problem 27"

(Added a solution with explanation)
m (Solution)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
If <math>x+\sqrt{x^2-1}+\frac{1}{x-\sqrt{x^2-1}}=20</math> then <math>x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}}=</math>
+
If <cmath>x+\sqrt{x^2-1}+\frac{1}{x-\sqrt{x^2-1}}=20,</cmath> then <cmath>x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}}=</cmath>
  
(A) <math>5.05</math> (B) <math>20</math> (C) <math>51.005</math> (D) <math>61.25</math> (E) <math>400</math>
+
<math>\textbf{(A) } 5.05 \qquad
 +
\textbf{(B) } 20 \qquad
 +
\textbf{(C) } 51.005 \qquad
 +
\textbf{(D) } 61.25 \qquad
 +
\textbf{(E) } 400</math>
  
 
== Solution ==
 
== Solution ==
We have <math>\frac{1}{x-\sqrt{x^2-1}} = \frac{x+\sqrt{x^2-1}}{x^2-(x^2-1)} = x+\sqrt{x^2-1}.</math> Hence the given equation becomes <math>2(x+\sqrt{x^2-1}) = 20 \implies x+\sqrt{x^2-1} = 10.</math> Thus <math>\frac{1}{x-\sqrt{x^2-1}} = 10</math>, so <math>x-\sqrt{x^2-1} = \frac{1}{10}</math>. Adding this to <math>x+\sqrt{x^2-1} = 10</math> gives <math>2x = 10 + \frac{1}{10} \implies x = \frac{101}{20}.</math> Now the quantity we need to find is <math>x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} = x^2 + \sqrt{x^4-1} + \frac{x^2 - \sqrt{x^4-1}}{x^4 - (x^4 - 1)} = 2x^2 = 2(\frac{101}{20})^2 = 51.005</math>, which is <math>\boxed{C}.</math>
+
We rationalize the denominator in the given equation, then solve for <math>x:</math>
 +
<cmath>\begin{align*}
 +
x+\sqrt{x^2-1}+\frac{x+\sqrt{x^2-1}}{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)} &= 20 \\
 +
x+\sqrt{x^2-1}+x+\sqrt{x^2-1} &= 20 \\
 +
x+\sqrt{x^2-1} &= 10 \\
 +
\sqrt{x^2-1} &= 10-x \\
 +
x^2-1 &= 100-20x+x^2 \\
 +
20x &= 101 \\
 +
x &= 5.05.
 +
\end{align*}</cmath>
 +
We rationalize the denominator in the requested expression, then simplify the result:
 +
<cmath>\begin{align*}
 +
x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} &= x^2+\sqrt{x^4-1}+\frac{x^2-\sqrt{x^4-1}}{\left(x^2+\sqrt{x^4-1}\right)\left(x^2-\sqrt{x^4-1}\right)} \\
 +
&= x^2+\sqrt{x^4-1}+x^2-\sqrt{x^4-1} \\
 +
&= 2x^2 \\
 +
&= \boxed{\textbf{(C) } 51.005}.
 +
\end{align*}</cmath>
 +
 
 +
~Hapaxoromenon (Solution)
 +
 
 +
~MRENTHUSIASM (Reformatting)
 +
 
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1991|num-b=26|num-a=28}}   
 
{{AHSME box|year=1991|num-b=26|num-a=28}}   

Latest revision as of 05:26, 6 September 2021

Problem

If \[x+\sqrt{x^2-1}+\frac{1}{x-\sqrt{x^2-1}}=20,\] then \[x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}}=\]

$\textbf{(A) } 5.05 \qquad \textbf{(B) } 20 \qquad \textbf{(C) } 51.005 \qquad \textbf{(D) } 61.25 \qquad \textbf{(E) } 400$

Solution

We rationalize the denominator in the given equation, then solve for $x:$ \begin{align*} x+\sqrt{x^2-1}+\frac{x+\sqrt{x^2-1}}{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)} &= 20 \\ x+\sqrt{x^2-1}+x+\sqrt{x^2-1} &= 20 \\ x+\sqrt{x^2-1} &= 10 \\ \sqrt{x^2-1} &= 10-x \\ x^2-1 &= 100-20x+x^2 \\ 20x &= 101 \\ x &= 5.05. \end{align*} We rationalize the denominator in the requested expression, then simplify the result: \begin{align*} x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} &= x^2+\sqrt{x^4-1}+\frac{x^2-\sqrt{x^4-1}}{\left(x^2+\sqrt{x^4-1}\right)\left(x^2-\sqrt{x^4-1}\right)} \\ &= x^2+\sqrt{x^4-1}+x^2-\sqrt{x^4-1} \\ &= 2x^2 \\ &= \boxed{\textbf{(C) } 51.005}. \end{align*}

~Hapaxoromenon (Solution)

~MRENTHUSIASM (Reformatting)

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png