Difference between revisions of "1991 AIME Problems/Problem 1"

m (Solution 1)
(Solution 2)
Line 12: Line 12:
 
=== Solution 2 ===
 
=== Solution 2 ===
 
Since <math>xy + x + y + 1 = 72</math>, this can be factored to <math>(x + 1)(y + 1) = 72</math>. As <math>x</math> and <math>y</math> are [[integer]]s, the possible sets for <math>(x,y)</math> (ignoring cases where <math>x > y</math> since it is symmetrical) are <math>(1, 35),\ (2, 23),\ (3, 17),\ (5, 11),\ (7,8)</math>. The second equation factors to <math>(x + y)xy = 880 = 2^4 \cdot 5 \cdot 11</math>. The only set with a factor of <math>11</math> is <math>(5,11)</math>, and checking shows that it is our solution.
 
Since <math>xy + x + y + 1 = 72</math>, this can be factored to <math>(x + 1)(y + 1) = 72</math>. As <math>x</math> and <math>y</math> are [[integer]]s, the possible sets for <math>(x,y)</math> (ignoring cases where <math>x > y</math> since it is symmetrical) are <math>(1, 35),\ (2, 23),\ (3, 17),\ (5, 11),\ (7,8)</math>. The second equation factors to <math>(x + y)xy = 880 = 2^4 \cdot 5 \cdot 11</math>. The only set with a factor of <math>11</math> is <math>(5,11)</math>, and checking shows that it is our solution.
 +
 +
 +
=== Solution 3 ===
  
 
== See also ==
 
== See also ==

Revision as of 21:51, 4 September 2019

Problem

Find $x^2+y^2_{}$ if $x_{}^{}$ and $y_{}^{}$ are positive integers such that

$xy_{}^{}+x+y = 71$
$x^2y+xy^2 = 880^{}_{}.$

Solution

Solution 1

Define $a = x + y$ and $b = xy$. Then $a + b = 71$ and $ab = 880$. Solving these two equations yields a quadratic: $a^2 - 71a + 880 = 0$, which factors to $(a - 16)(a - 55) = 0$. Either $a = 16$ and $b = 55$ or $a = 55$ and $b = 16$. For the first case, it is easy to see that $(x,y)$ can be $(5,11)$ (or vice versa). In the second case, since all factors of $16$ must be $\le 16$, no two factors of $16$ can sum greater than $32$, and so there are no integral solutions for $(x,y)$. The solution is $5^2 + 11^2 = \boxed{146}$.

Solution 2

Since $xy + x + y + 1 = 72$, this can be factored to $(x + 1)(y + 1) = 72$. As $x$ and $y$ are integers, the possible sets for $(x,y)$ (ignoring cases where $x > y$ since it is symmetrical) are $(1, 35),\ (2, 23),\ (3, 17),\ (5, 11),\ (7,8)$. The second equation factors to $(x + y)xy = 880 = 2^4 \cdot 5 \cdot 11$. The only set with a factor of $11$ is $(5,11)$, and checking shows that it is our solution.


Solution 3

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png