Difference between revisions of "1991 AIME Problems/Problem 2"

m (Solution: \left(right))
(Solution: +img)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{image}}
+
[[Image:1991 AIME-2.png]]
 +
 
 
The length of the diagonal is <math>\sqrt{3^2 + 4^2} = 5</math> (a 3-4-5 [[right triangle]]). For each <math>k</math>, <math>\overline{P_kQ_k}</math> is the [[hypotenuse]] of a 3-4-5 right triangle with sides of <math>3 \cdot \frac{k}{168}, 4 \cdot \frac{k}{168}</math>. Thus, its length is <math>5 \cdot \frac{k}{168}</math>.
 
The length of the diagonal is <math>\sqrt{3^2 + 4^2} = 5</math> (a 3-4-5 [[right triangle]]). For each <math>k</math>, <math>\overline{P_kQ_k}</math> is the [[hypotenuse]] of a 3-4-5 right triangle with sides of <math>3 \cdot \frac{k}{168}, 4 \cdot \frac{k}{168}</math>. Thus, its length is <math>5 \cdot \frac{k}{168}</math>.
  
The sum we are looking for is <math>2 \cdot \left(\sum_{k = 1}^{167} 5 \cdot \frac{k}{168}\right) + 5 = \frac{5}{84}\sum_{k=1}^{167}k + 5</math>. Using the formula for the sum of the first n numbers, we find that the solution is <math>\frac{5}{84} \cdot \frac{168 \cdot 167}{2} + 5 = 5 \cdot 167 + 5 = 840</math>.
+
The sum we are looking for is <math>2 \cdot \left(\sum_{k = 1}^{167} 5 \cdot \frac{k}{168}\right) + 5 = \frac{5}{84}\sum_{k=1}^{167}k + 5</math>. Using the formula for the sum of the first n numbers, we find that the solution is <math>\frac{5}{84} \cdot \frac{168 \cdot 167}{2} + 5 = 5 \cdot 167 + 5 = \boxed{840}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 16:51, 23 October 2007

Problem

Rectangle $ABCD_{}^{}$ has sides $\overline {AB}$ of length 4 and $\overline {CB}$ of length 3. Divide $\overline {AB}$ into 168 congruent segments with points $A_{}^{}=P_0, P_1, \ldots, P_{168}=B$, and divide $\overline {CB}$ into 168 congruent segments with points $C_{}^{}=Q_0, Q_1, \ldots, Q_{168}=B$. For $1_{}^{} \le k \le 167$, draw the segments $\overline {P_kQ_k}$. Repeat this construction on the sides $\overline {AD}$ and $\overline {CD}$, and then draw the diagonal $\overline {AC}$. Find the sum of the lengths of the 335 parallel segments drawn.

Solution

1991 AIME-2.png

The length of the diagonal is $\sqrt{3^2 + 4^2} = 5$ (a 3-4-5 right triangle). For each $k$, $\overline{P_kQ_k}$ is the hypotenuse of a 3-4-5 right triangle with sides of $3 \cdot \frac{k}{168}, 4 \cdot \frac{k}{168}$. Thus, its length is $5 \cdot \frac{k}{168}$.

The sum we are looking for is $2 \cdot \left(\sum_{k = 1}^{167} 5 \cdot \frac{k}{168}\right) + 5 = \frac{5}{84}\sum_{k=1}^{167}k + 5$. Using the formula for the sum of the first n numbers, we find that the solution is $\frac{5}{84} \cdot \frac{168 \cdot 167}{2} + 5 = 5 \cdot 167 + 5 = \boxed{840}$.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions