Difference between revisions of "1991 AJHSME Problems/Problem 12"

(Solution 2)
 
Line 12: Line 12:
  
 
==Solution 2==
 
==Solution 2==
As we know that <math>\frac{1990+1991+1992}{n}</math> has to be some multiple of <math>\frac{2+3+4}{3}</math>, then we know that the first equation is <math>995</math>(1990/2) times bigger than the second one(in my solution), so the bottom must be <math>3\cdot995=\boxed{\text{(D)}1991}</math>
+
As we know that <math>\frac{1990+1991+1992}{n}</math> has to be some multiple of <math>\frac{2+3+4}{3}</math>, then we know that the first equation is <math>995</math>(1990/2) times bigger than the second one(in my solution), so the bottom must be <math>3\cdot995=\boxed{\text{(D)}1991}</math>-fn106068
  
 
==See Also==
 
==See Also==

Latest revision as of 11:29, 28 August 2021

Problem

If $\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}$, then $N=$

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992$

Solution 1

Note that for all integers $n\neq 0$, \[\frac{(n-1)+n+(n+1)}{n}=3.\] Thus, we must have $N=1991\rightarrow \boxed{\text{D}}$.

Solution 2

As we know that $\frac{1990+1991+1992}{n}$ has to be some multiple of $\frac{2+3+4}{3}$, then we know that the first equation is $995$(1990/2) times bigger than the second one(in my solution), so the bottom must be $3\cdot995=\boxed{\text{(D)}1991}$-fn106068

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png