1991 USAMO Problems/Problem 1

Revision as of 20:50, 3 July 2013 by Etude (talk | contribs)

Problem

In triangle $ABC$, angle $A$ is twice angle $B$, angle $C$ is obtuse, and the three side lengths $a, b, c$ are integers. Determine, with proof, the minimum possible perimeter.

Solution

After drawing the triangle, also draw the angle bisector of $\angle A$, and let it intersect $\overline{BC}$ at $D$. Notice that $\triangle ADC\sim \triangle BAC$, and let $AD=x$. Now from similarity, \[x=\frac{bc}{a}\] However, from the angle bisector theorem, we have \[BD=\frac{ac}{b+c}\] but $\triangle ABD$ is isosceles, so \[x=BD\Longrightarrow \frac{bc}{a}=\frac{ac}{b+c}\Longrightarrow a^2=b(b+c)\] so all sets of side lengths which satisfy the conditions also meet the boxed condition.

Notice that $\text{gcd}(a, b, c)=1$ or else we can form a triangle by dividing $a, b, c$ by their greatest common divisor to get smaller integer side lengths, contradicting the perimeter minimality. Since $a$ is squared, $b$ must also be a square because if it isn't, then $b$ must share a common factor with $b+c$, meaning it also shares a common factor with $c$, which means $a, b, c$ share a common factor, contradiction. Thus we let $b = x^2, b+c = y^2$, so $a = xy$, and we want the minimal pair $(x,y)$.

By the Law of Cosines, \[b^2 = a^2 + c^2 - 2ac\cos B\]

Substituting $a^2 = b^2 + bc$ yields $\cos B = \frac{b+c}{2a} = \frac{y}{2x}$. Since $\angle C > 90^{\circ}$, $0^{\circ} < \angle B < 30^{\circ} \Longrightarrow \sqrt{3} < \frac{y}{x} < 2$. For $x \le 3$ there are no integer solutions. For $x = 4$, we have $y = 7$ that works, so the side lengths are $(a, b, c)=(28, 16, 33)$ and the minimal perimeter is $\boxed{77}$.

See also

1991 USAMO (ProblemsResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png