# 1992 AHSME Problems/Problem 26

## Problem

$[asy] fill((1,0)--arc((1,0),2,180,225)--cycle,grey); fill((-1,0)--arc((-1,0),2,315,360)--cycle,grey); fill((0,-1)--arc((0,-1),2-sqrt(2),225,315)--cycle,grey); fill((0,0)--arc((0,0),1,180,360)--cycle,white); draw((1,0)--arc((1,0),2,180,225)--(1,0),black+linewidth(1)); draw((-1,0)--arc((-1,0),2,315,360)--(-1,0),black+linewidth(1)); draw((0,0)--arc((0,0),1,180,360)--(0,0),black+linewidth(1)); draw(arc((0,-1),2-sqrt(2),225,315),black+linewidth(1)); draw((0,0)--(0,-1),black+linewidth(1)); MP("C",(0,0),N);MP("A",(-1,0),N);MP("B",(1,0),N); MP("D",(0,-.8),NW);MP("E",(1-sqrt(2),-sqrt(2)),SW);MP("F",(-1+sqrt(2),-sqrt(2)),SE); [/asy]$

Semicircle $\widehat{AB}$ has center $C$ and radius $1$. Point $D$ is on $\widehat{AB}$ and $\overline{CD}\perp\overline{AB}$. Extend $\overline{BD}$ and $\overline{AD}$ to $E$ and $F$, respectively, so that circular arcs $\widehat{AE}$ and $\widehat{BF}$ have $B$ and $A$ as their respective centers. Circular arc $\widehat{EF}$ has center $D$. The area of the shaded "smile" $AEFBDA$, is

$\text{(A) } (2-\sqrt{2})\pi\quad \text{(B) } 2\pi-\pi \sqrt{2}-1\quad \text{(C) } (1-\frac{\sqrt{2}}{2})\pi\quad\\ \text{(D) } \frac{5\pi}{2}-\pi\sqrt{2}-1\quad \text{(E) } (3-2\sqrt{2})\pi$

## Solution

$\fbox{B}$