1992 AIME Problems/Problem 14

Problem

In triangle $ABC^{}_{}$, $A'$, $B'$, and $C'$ are on the sides $BC$, $AC^{}_{}$, and $AB^{}_{}$, respectively. Given that $AA'$, $BB'$, and $CC'$ are concurrent at the point $O^{}_{}$, and that $\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92$, find $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}$.

Solution

Using mass points, let the weights of $A$, $B$, and $C$ be $a$, $b$, and $c$ respectively.

Then, the weights of $A'$, $B'$, and $C'$ are $b+c$, $c+a$, and $a+b$ respectively.

Thus, $\frac{AO^{}_{}}{OA'} = \frac{b+c}{a}$, $\frac{BO^{}_{}}{OB'} = \frac{c+a}{b}$, and $\frac{CO^{}_{}}{OC'} = \frac{a+b}{c}$.

Therefore: $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}$ $= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =$

$2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ $= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions