During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

Difference between revisions of "1992 AIME Problems/Problem 5"

Problem

Let $S^{}_{}$ be the set of all rational numbers $r^{}_{}$, $0^{}_{}, that have a repeating decimal expansion in the form $0.abcabcabc\ldots=0.\overline{abc}$, where the digits $a^{}_{}$, $b^{}_{}$, and $c^{}_{}$ are not necessarily distinct. To write the elements of $S^{}_{}$ as fractions in lowest terms, how many different numerators are required?

Solution

We consider the method in which repeating decimals are normally converted to fractions with an example:

$x=0.\overline{176}$

$\Rightarrow 1000x=176.\overline{176}$

$\Rightarrow 999x=1000x-x=176$

$\Rightarrow x=\frac{176}{999}$

Thus, let $x=0.\overline{abc}$

$\Rightarrow 1000x=abc.\overline{abc}$

$\Rightarrow 999x=1000x-x=abc$

$\Rightarrow x=\frac{abc}{999}$

If $abc$ is not divisible by $3$ or $37$, then this is in lowest terms. Let us consider the other multiples: $333$ multiples of $3$, $27$ of $37$, and $9$ of $3$ and $37$, so $999-333-27+9 = 648$, which is the amount that are neither. The $12$ numbers that are multiples of $81$ reduce to multiples of $3$. We have to count these since it will reduce to a multiple of $3$ which we have removed from $999$, but, this cannot be removed since the numerator cannot cancel the $3$.There aren't any numbers which are multiples of $37^2$, so we can't get numerators which are multiples of $37$. Therefore $648 + 12 = \boxed{660}$.

Solution 2

We can see that the denominator of the fraction will be 999b, where b is either 1, 1/3, 1/111, 1/9, or 1/333. This means that the numerator stays abc unless abc divides 999. Finding the numbers relatively prime to 999 gives us the numerators when the fraction cannot be simplified past 999.

$\Rightarrow 999(1 - \frac{1}{3})(1- \frac{1}{111}) = 660$

Now, look at a number that does divide 999:

$\Rightarrow 555/999 = 5/9$

We can see that if a number does divide 999, it will be simplified into a number which is relatively prime to 999 (since that is what simplifying is). There are 660 numbers less than or relatively prime to 999, so the answer is $\boxed{660}$. - krishkhushi09

 1992 AIME (Problems • Answer Key • Resources) Preceded byProblem 4 Followed byProblem 6 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions