Difference between revisions of "1992 AIME Problems/Problem 6"

m
(Solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Consider what carrying means: If carrying is needed to add two numbers with digits <math>abcd</math> and <math>efgh</math>, then <math>h+d\ge 10</math> or <math>c+g\ge 10</math> or <math>b+f\ge 10</math>. 6.  Consider <math>c \in \{0, 1, 2, 3, 4\}</math>. <math>1abc + 1abc+1</math> has no carry if <math>a, b \in \{0, 1, 2, 3, 4\}</math>. This gives <math>5^3=125</math> possible solutions.  
+
Consider what carrying means: If carrying is needed to add two numbers with digits <math>abcd</math> and <math>efgh</math>, then <math>h+d\ge 10</math> or <math>c+g\ge 10</math> or <math>b+f\ge 10</math>. 6.  Consider <math>c \in \{0, 1, 2, 3, 4\}</math>. <math>1abc + 1ab(c+1)</math> has no carry if <math>a, b \in \{0, 1, 2, 3, 4\}</math>. This gives <math>5^3=125</math> possible solutions.  
  
 
With <math>c \in \{5, 6, 7, 8\}</math>, there obviously must be a carry. Consider <math>c = 9</math>. <math>a, b \in \{0, 1, 2, 3, 4\}</math> have no carry. This gives <math>5^2=25</math> possible solutions. Considering <math>b = 9</math>,  <math>a \in \{0, 1, 2, 3, 4, 9\}</math> have no carry. Thus, the solution is <math>125 + 25 + 6=\boxed{156}</math>.  
 
With <math>c \in \{5, 6, 7, 8\}</math>, there obviously must be a carry. Consider <math>c = 9</math>. <math>a, b \in \{0, 1, 2, 3, 4\}</math> have no carry. This gives <math>5^2=25</math> possible solutions. Considering <math>b = 9</math>,  <math>a \in \{0, 1, 2, 3, 4, 9\}</math> have no carry. Thus, the solution is <math>125 + 25 + 6=\boxed{156}</math>.  

Revision as of 14:15, 17 July 2008

Problem

For how many pairs of consecutive integers in $\{1000,1001,1002,\ldots,2000\}$ is no carrying required when the two integers are added?

Solution

Consider what carrying means: If carrying is needed to add two numbers with digits $abcd$ and $efgh$, then $h+d\ge 10$ or $c+g\ge 10$ or $b+f\ge 10$. 6. Consider $c \in \{0, 1, 2, 3, 4\}$. $1abc + 1ab(c+1)$ has no carry if $a, b \in \{0, 1, 2, 3, 4\}$. This gives $5^3=125$ possible solutions.

With $c \in \{5, 6, 7, 8\}$, there obviously must be a carry. Consider $c = 9$. $a, b \in \{0, 1, 2, 3, 4\}$ have no carry. This gives $5^2=25$ possible solutions. Considering $b = 9$, $a \in \{0, 1, 2, 3, 4, 9\}$ have no carry. Thus, the solution is $125 + 25 + 6=\boxed{156}$.

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions