Difference between revisions of "1992 AIME Problems/Problem 8"

m
Line 8: Line 8:
  
 
== Alternate Solution ==
 
== Alternate Solution ==
Let <math>\Delta(\Delta(...A)...)</math>, with <math>n\space\Delta</math>'s, be denoted as <math>\Delta^n</math>.
+
Let <math>\Delta^1 A=\Delta A</math>, and <math>\Delta^n A=\Delta(\Delta^{(n-1)}A)</math>.
  
 
Note that in every sequence of <math>a_i</math>, <math>a_n=\binom{n-1}{1}\Delta a_n + \binom{n-1}{2}\Delta^2 a_n +\binom{n-1}{3}\Delta^3 a_n + ...</math>
 
Note that in every sequence of <math>a_i</math>, <math>a_n=\binom{n-1}{1}\Delta a_n + \binom{n-1}{2}\Delta^2 a_n +\binom{n-1}{3}\Delta^3 a_n + ...</math>
Line 20: Line 20:
 
<math>a_{92}=0=a_1+91(a_2-a_1)+\binom{91}{2}=91a_2-90a_1+4095</math>
 
<math>a_{92}=0=a_1+91(a_2-a_1)+\binom{91}{2}=91a_2-90a_1+4095</math>
  
Solving, <math>a_1=\boxed{819}</math>
+
Solving, <math>a_1=\boxed{819}</math>.
 
== See also ==
 
== See also ==
 
{{AIME box|year=1992|num-b=7|num-a=9}}
 
{{AIME box|year=1992|num-b=7|num-a=9}}

Revision as of 22:34, 15 March 2009

Problem

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A^{}_{}$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^\mbox{th}_{}$ (Error compiling LaTeX. Unknown error_msg) term is $a_{n+1}-a_n^{}$. Suppose that all of the terms of the sequence $\Delta(\Delta A^{}_{})$ are $1^{}_{}$, and that $a_{19}=a_{92}^{}=0$. Find $a_1^{}$.

Solution

Since the second differences are all $1$ and $a_{19}=a_{92}^{}=0$, $a_n$ can be expressed explicitly by the quadratic: $a_n=\frac{1}{2!}(n-19)(n-92)$.

Thus, $a_1=\frac{1}{2!}(1-19)(1-92)=\boxed{819}$.

Alternate Solution

Let $\Delta^1 A=\Delta A$, and $\Delta^n A=\Delta(\Delta^{(n-1)}A)$.

Note that in every sequence of $a_i$, $a_n=\binom{n-1}{1}\Delta a_n + \binom{n-1}{2}\Delta^2 a_n +\binom{n-1}{3}\Delta^3 a_n + ...$

Then $a_n=a_1 +\binom{n-1}{1}\Delta a_1 +\binom{n-1}{2}\Delta^2 a_1 +\binom{n-1}{3}\Delta^3 a_1 + ...$

Since $\Delta a_1 =a_2 -a_1$, $a_n=a_1 +\binom{n-1}{1}(a_2-a_1) +\binom{n-1}{2}\cdot 1=a_1 +n(a_2-a_1) +\binom{n-1}{2}$

$a_{19}=0=a_1+18(a_2-a_1)+\binom{18}{2}=18a_2-17a_1+153$

$a_{92}=0=a_1+91(a_2-a_1)+\binom{91}{2}=91a_2-90a_1+4095$

Solving, $a_1=\boxed{819}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions