Difference between revisions of "1992 AIME Problems/Problem 9"

(LaTeXed existing solution and added another.)
Line 2: Line 2:
 
Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>.
 
Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>.
  
== Solution ==
+
== Solution 1==
{{solution}}
+
Let <math>AB</math> be the base of the trapezoid and consider angles <math>A</math> and <math>B</math>.  Let <math>x=AP</math> and let <math>h</math> equal the height of the trapezoid.  Let <math>r</math> equal the radius of the circle.
  
== See also ==
+
Then
{{AIME box|year=1992|num-b=8|num-a=10}}
 
  
[[Category:Intermediate Geometry Problems]]
+
<math>(1) \sin{A}= \frac{r}{x} = \frac{h}{70}</math>  and <math>\sin{B}= \frac{r}{92-x} =  \frac{h}{50}</math>
let AB be the base of the trapezoid and consider angles A and B. Let x equal the distance from A to P and let h equal the height of the trapezoid.  Let r equal the radius of the circle.
 
  
then
+
Let <math>z</math> be the distance along <math>AB</math> from <math>A</math> to where the perp from <math>D</math> meets <math>AB</math>.
  
  1. sinA= r/x = h/70  and sinB= r/(92-x)  = h/50
+
Then <math>h^2 +z^2 =70^2</math> and <math>(73-z)^2 + h^2 =50^2</math> so <math>h =\frac{\sqrt{44710959}}{146}</math>
 +
now substitute this into <math>(1)</math> to get <math>x= \frac{11753}{219} = \frac{161}{3}</math> and <math>m+n = 164</math>.  
  
let z be the distance along AB from A to where the perp from D meets AB
+
== Solution 2 ==
 +
From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>.
  
then h^2 +z^2 =70^2  and (73-z)^2 + h^2 =50^2  so h =(44710959)^.5 /146
+
== See also ==
now substitute this into 1 to get x= 11753/219    kevin raponi
+
{{AIME box|year=1992|num-b=8|num-a=10}}
 +
 
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 14:50, 23 June 2008

Problem

Trapezoid $ABCD^{}_{}$ has sides $AB=92^{}_{}$, $BC=50^{}_{}$, $CD=19^{}_{}$, and $AD=70^{}_{}$, with $AB^{}_{}$ parallel to $CD^{}_{}$. A circle with center $P^{}_{}$ on $AB^{}_{}$ is drawn tangent to $BC^{}_{}$ and $AD^{}_{}$. Given that $AP^{}_{}=\frac mn$, where $m^{}_{}$ and $n^{}_{}$ are relatively prime positive integers, find $m+n^{}_{}$.

Solution 1

Let $AB$ be the base of the trapezoid and consider angles $A$ and $B$. Let $x=AP$ and let $h$ equal the height of the trapezoid. Let $r$ equal the radius of the circle.

Then

$(1) \sin{A}= \frac{r}{x} = \frac{h}{70}$ and $\sin{B}= \frac{r}{92-x}  =  \frac{h}{50}$

Let $z$ be the distance along $AB$ from $A$ to where the perp from $D$ meets $AB$.

Then $h^2 +z^2 =70^2$ and $(73-z)^2 + h^2 =50^2$ so $h =\frac{\sqrt{44710959}}{146}$ now substitute this into $(1)$ to get $x= \frac{11753}{219} = \frac{161}{3}$ and $m+n = 164$.

Solution 2

From $(1)$ above, $x = \frac{70r}{h}$ and $92-x = \frac{50r}{h}$. Adding these equations yields $92 = \frac{120r}{h}$. Thus, $x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}$, and $m+n = \boxed{164}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions