Difference between revisions of "1992 AIME Problems/Problem 9"

(LaTeXed existing solution and added another.)
(Solution 2)
Line 15: Line 15:
  
 
== Solution 2 ==
 
== Solution 2 ==
From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>.  
+
From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>.
 +
 
 +
 
 +
 
 +
 
 +
from solution 1 we get from 1 that  h/r = 70/x  and h/r = 50/ (92-x)
 +
 
 +
this implies that  70/x =50/(92-x)  so x = 161/3
  
 
== See also ==
 
== See also ==

Revision as of 15:20, 23 June 2008

Problem

Trapezoid $ABCD^{}_{}$ has sides $AB=92^{}_{}$, $BC=50^{}_{}$, $CD=19^{}_{}$, and $AD=70^{}_{}$, with $AB^{}_{}$ parallel to $CD^{}_{}$. A circle with center $P^{}_{}$ on $AB^{}_{}$ is drawn tangent to $BC^{}_{}$ and $AD^{}_{}$. Given that $AP^{}_{}=\frac mn$, where $m^{}_{}$ and $n^{}_{}$ are relatively prime positive integers, find $m+n^{}_{}$.

Solution 1

Let $AB$ be the base of the trapezoid and consider angles $A$ and $B$. Let $x=AP$ and let $h$ equal the height of the trapezoid. Let $r$ equal the radius of the circle.

Then

$(1) \sin{A}= \frac{r}{x} = \frac{h}{70}$ and $\sin{B}= \frac{r}{92-x}  =  \frac{h}{50}$

Let $z$ be the distance along $AB$ from $A$ to where the perp from $D$ meets $AB$.

Then $h^2 +z^2 =70^2$ and $(73-z)^2 + h^2 =50^2$ so $h =\frac{\sqrt{44710959}}{146}$ now substitute this into $(1)$ to get $x= \frac{11753}{219} = \frac{161}{3}$ and $m+n = 164$.

Solution 2

From $(1)$ above, $x = \frac{70r}{h}$ and $92-x = \frac{50r}{h}$. Adding these equations yields $92 = \frac{120r}{h}$. Thus, $x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}$, and $m+n = \boxed{164}$.



from solution 1 we get from 1 that h/r = 70/x and h/r = 50/ (92-x)

this implies that 70/x =50/(92-x) so x = 161/3

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions