Difference between revisions of "1993 AHSME Problems"

m (Problem 2)
Line 164: Line 164:
 
* [[AHSME Problems and Solutions]]
 
* [[AHSME Problems and Solutions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
{{MAA Notice}}

Revision as of 13:55, 5 July 2013

Problem 1

For integers $a, b$ and $c$, define $\boxed{a,b,c}$ to mean $a^b-b^c+c^a$. Then $\boxed{1,-1,2}$ equals

$\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \text{(E)} \ 4$

Solution

Problem 2

In $\triangle ABC$, $\angle A=55^\circ$, $\angle C=75^\circ$, $D$ is on side $\overline{AB}$ and $E$ is on side $\overline{BC}$ If $DB=BE$, then $\angle BED=$

$\text{(A)}\ 50^\circ \qquad \text{(B)}\ 55^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 65^\circ \qquad \text{(E)}\ 70^\circ$


Solution

Problem 3

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution


Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

Problem 26

Solution

Problem 27

Solution

Problem 28

Solution

Problem 29

Solution

Problem 30

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png