Difference between revisions of "1993 AIME Problems/Problem 6"

(Solution 3)
(Solution 5)
(12 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
What is the smallest [[positive]] [[integer]] than can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers?
+
What is the smallest [[positive]] [[integer]] that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers?
  
 
==Solution==
 
==Solution==
Line 25: Line 25:
  
 
Let <math>n</math> be the desired integer. From the given information, we have
 
Let <math>n</math> be the desired integer. From the given information, we have
<cmath> 9x &= a \\ 11y &= a \\ 10z + 5 &= a, </cmath> here, <math>x,</math> and <math>y</math> are the middle terms of the sequence of 9 and 11 numbers, respectively. Similarly, we have <math>z</math> as the 4th term of the sequence. Since, <math>a</math> is a multiple of <math>9</math> and <math>11,</math> it is also a multiple of <math>\lcm[9,11]=99.</math> Hence, <math>a=99m,</math> for some <math>m.</math> So, we have <math>10z + 5 = 99m.</math> It follows that <math>99(5) = \boxed{495}</math>$ is the smallest integer that can be represented in such a way.
+
<cmath> \begin{align*}9x &= a \\ 11y &= a \\ 10z + 5 &= a, \end{align*}</cmath> here, <math>x,</math> and <math>y</math> are the middle terms of the sequence of 9 and 11 numbers, respectively. Similarly, we have <math>z</math> as the 4th term of the sequence. Since, <math>a</math> is a multiple of <math>9</math> and <math>11,</math> it is also a multiple of <math>\text{lcm}[9,11]=99.</math> Hence, <math>a=99m,</math> for some <math>m.</math> So, we have <math>10z + 5 = 99m.</math> It follows that <math>99(5) = \boxed{495}</math> is the smallest integer that can be represented in such a way.
 +
 
 +
=== Solution 4 ===
 +
By the method in Solution 1, we find that the number <math>n</math> can be written as <math>9a+36=10b+45=11c+55</math> for some integers <math>a,b,c</math>. From this, we can see that <math>n</math> must be divisible by 9, 5, and 11. This means <math>n</math> must be divisible by 495. The only multiples of 495 that are small enough to be AIME answers are 495 and 990. From the second of the three expressions above, we can see that <math>n</math> cannot be divisible by 10, so <math>n</math> must equal <math>\boxed{495}</math>. Solution by Zeroman.
 +
 
 +
=== Solution 5 ===
 +
 
 +
First note that the integer clearly must be divisible by <math>9</math> and <math>11</math> since we can use the "let the middle number be x" trick. Let the number be <math>99k</math> for some integer <math>k.</math> Now let the <math>10</math> numbers be <math>x,x+1, \cdots x+9.</math> We have <math>10x+45 = 99k.</math> Taking mod <math>5</math> yields <math>k \equiv 0 \pmod{5}.</math> Since <math>k</math> is positive, we take <math>k=5</math> thus obtaining <math>99 \cdot 5 = \boxed{495}</math> as our answer.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1993|num-b=5|num-a=7}}
 
{{AIME box|year=1993|num-b=5|num-a=7}}
 +
{{MAA Notice}}

Revision as of 21:28, 21 September 2020

Problem

What is the smallest positive integer that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers?

Solution

Solution 1

Denote the first of each of the series of consecutive integers as $a,\ b,\ c$. Therefore, $n = a + (a + 1) \ldots (a + 8) = 9a + 36 = 10b + 45 = 11c + 55$. Simplifying, $9a = 10b + 9 = 11c + 19$. The relationship between $a,\ b$ suggests that $b$ is divisible by $9$. Also, $10b -10 = 10(b-1) = 11c$, so $b-1$ is divisible by $11$. We find that the least possible value of $b = 45$, so the answer is $10(45) + 45 = 495$.

Solution 2

Let the desired integer be $n$. From the information given, it can be determined that, for positive integers $a, \ b, \ c$:

$n = 9a + 36 = 10b + 45 = 11c + 55$

This can be rewritten as the following congruences:

$n \equiv 0 \pmod{9}$

$n \equiv 5 \pmod{10}$

$n \equiv 0 \pmod{11}$

Since 9 and 11 are relatively prime, n is a multiple of 99. It can then easily be determined that the smallest multiple of 99 with a units digit 5 (this can be interpreted from the 2nd congruence) is $\boxed{495}$

Solution 3

Let $n$ be the desired integer. From the given information, we have \begin{align*}9x &= a \\ 11y &= a \\ 10z + 5 &= a, \end{align*} here, $x,$ and $y$ are the middle terms of the sequence of 9 and 11 numbers, respectively. Similarly, we have $z$ as the 4th term of the sequence. Since, $a$ is a multiple of $9$ and $11,$ it is also a multiple of $\text{lcm}[9,11]=99.$ Hence, $a=99m,$ for some $m.$ So, we have $10z + 5 = 99m.$ It follows that $99(5) = \boxed{495}$ is the smallest integer that can be represented in such a way.

Solution 4

By the method in Solution 1, we find that the number $n$ can be written as $9a+36=10b+45=11c+55$ for some integers $a,b,c$. From this, we can see that $n$ must be divisible by 9, 5, and 11. This means $n$ must be divisible by 495. The only multiples of 495 that are small enough to be AIME answers are 495 and 990. From the second of the three expressions above, we can see that $n$ cannot be divisible by 10, so $n$ must equal $\boxed{495}$. Solution by Zeroman.

Solution 5

First note that the integer clearly must be divisible by $9$ and $11$ since we can use the "let the middle number be x" trick. Let the number be $99k$ for some integer $k.$ Now let the $10$ numbers be $x,x+1, \cdots x+9.$ We have $10x+45 = 99k.$ Taking mod $5$ yields $k \equiv 0 \pmod{5}.$ Since $k$ is positive, we take $k=5$ thus obtaining $99 \cdot 5 = \boxed{495}$ as our answer.

See also

1993 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png