Difference between revisions of "1993 AJHSME Problems/Problem 18"
Mrdavid445 (talk | contribs) (Created page with "==Problem== The rectangle shown has length <math>AC=32</math>, width <math>AE=20</math>, and <math>B</math> and <math>F</math> are midpoints of <math>\overline{AC}</math> and <m...") |
(Reverted vandalism from Solvingking) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 18: | Line 18: | ||
<math>\text{(A)}\ 320 \qquad \text{(B)}\ 325 \qquad \text{(C)}\ 330 \qquad \text{(D)}\ 335 \qquad \text{(E)}\ 340</math> | <math>\text{(A)}\ 320 \qquad \text{(B)}\ 325 \qquad \text{(C)}\ 330 \qquad \text{(D)}\ 335 \qquad \text{(E)}\ 340</math> | ||
+ | |||
+ | ==Solution== | ||
+ | The area of the quadrilateral <math>ABDF</math> is equal to the areas of the two right triangles <math>\triangle BCD</math> and <math>\triangle EFD</math> subtracted from the area of the rectangle <math>ABCD</math>. Because <math>B</math> and <math>F</math> are midpoints, we know the dimensions of the two right triangles. | ||
+ | |||
+ | <asy> | ||
+ | pair A,B,C,D,EE,F; | ||
+ | A = (0,20); B = (16,20); C = (32,20); D = (32,0); EE = (0,0); F = (0,10); | ||
+ | draw(A--C--D--EE--cycle); | ||
+ | draw(B--D--F); | ||
+ | dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); | ||
+ | label("$A$",A,NW); | ||
+ | label("$B$",B,N); | ||
+ | label("$C$",C,NE); | ||
+ | label("$D$",D,SE); | ||
+ | label("$E$",EE,SW); | ||
+ | label("$F$",F,W); | ||
+ | label("$16$",A--B,N); | ||
+ | label("$16$",B--C,N); | ||
+ | label("$32$",E--D,S); | ||
+ | label("$10$",E--F,W); | ||
+ | label("$10$",A--F,W); | ||
+ | label("$20$",C--D,E); | ||
+ | </asy> | ||
+ | |||
+ | <cmath>(20)(32)-\frac{(16)(20)}{2}-\frac{(10)(32)}{2} = 640-160-160 = \boxed{\text{(A)}\ 320}</cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AJHSME box|year=1993|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Latest revision as of 00:05, 11 November 2019
Problem
The rectangle shown has length , width , and and are midpoints of and , respectively. The area of quadrilateral is
Solution
The area of the quadrilateral is equal to the areas of the two right triangles and subtracted from the area of the rectangle . Because and are midpoints, we know the dimensions of the two right triangles.
See Also
1993 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.