Difference between revisions of "1993 UNCO Math Contest II Problems/Problem 2"
(Created page with "== Problem == Determine the digit in the <math>623^{rd}</math> place after the decimal point in the repeating decimal for: <cmath>\frac{1}{9}+\frac{2}{99}+\frac{3}{999}.</cmath>...") |
Pi3point14 (talk | contribs) (→Solution) |
||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
+ | Fist we add them together and divide. We get the repeating decimal .134316134316. We can see that it repeats every six decimal places, so we need to find the remainder when 623 is divided by six. When we divide, we see that the remainder in five, so we go in five decimal places and find 1, and we are done. | ||
== See also == | == See also == |
Latest revision as of 14:18, 30 December 2014
Problem
Determine the digit in the place after the decimal point in the repeating decimal for:
Solution
Fist we add them together and divide. We get the repeating decimal .134316134316. We can see that it repeats every six decimal places, so we need to find the remainder when 623 is divided by six. When we divide, we see that the remainder in five, so we go in five decimal places and find 1, and we are done.
See also
1993 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
All UNCO Math Contest Problems and Solutions |