1993 UNCO Math Contest II Problems/Problem 2

Revision as of 14:18, 30 December 2014 by Pi3point14 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Determine the digit in the $623^{rd}$ place after the decimal point in the repeating decimal for: \[\frac{1}{9}+\frac{2}{99}+\frac{3}{999}.\]


Fist we add them together and divide. We get the repeating decimal .134316134316. We can see that it repeats every six decimal places, so we need to find the remainder when 623 is divided by six. When we divide, we see that the remainder in five, so we go in five decimal places and find 1, and we are done.

See also

1993 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions
Invalid username
Login to AoPS