Difference between revisions of "1994 AHSME Problems/Problem 20"

(Solution)
m (Solution)
Line 4: Line 4:
 
<math> \textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 4</math>
 
<math> \textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 4</math>
 
==Solution==
 
==Solution==
Let <math>y=xr, z=xr^2</math>. Then we have <math>2xr-x=3xr^2-2xr</math>. Dividing through by <math>x</math>, we get <math>2r-1=3r^2-2r, 3r^2-4r+1=0, 3(r-1)(r-\frac{1}{3})</math>. Since we are given <math>x\neq y\implies r\neq 1</math>, the answer is <math>\boxed{\textbf{(B)}\ \frac{1}{3}}</math>
+
Let <math>y=xr, z=xr^2</math>. Since <math>x, 2y, 3z</math> are an arithmetic sequence, there is a common difference and we have <math>2xr-x=3xr^2-2xr</math>. Dividing through by <math>x</math>, we get <math>2r-1=3r^2-2r</math> or, rearranging, <math>(r-1)(3r-1)=0</math>. Since we are given <math>x\neq y\implies r\neq 1</math>, the answer is <math>\boxed{\textbf{(B)}\ \frac{1}{3}}</math>
 +
 
 +
 
 +
==See Also==
 +
 
 +
{{AHSME box|year=1994|num-b=16|num-a=18}}
 +
{{MAA Notice}}

Revision as of 03:14, 28 May 2021

Problem

Suppose $x,y,z$ is a geometric sequence with common ratio $r$ and $x \neq y$. If $x, 2y, 3z$ is an arithmetic sequence, then $r$ is

$\textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 4$

Solution

Let $y=xr, z=xr^2$. Since $x, 2y, 3z$ are an arithmetic sequence, there is a common difference and we have $2xr-x=3xr^2-2xr$. Dividing through by $x$, we get $2r-1=3r^2-2r$ or, rearranging, $(r-1)(3r-1)=0$. Since we are given $x\neq y\implies r\neq 1$, the answer is $\boxed{\textbf{(B)}\ \frac{1}{3}}$


See Also

1994 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png